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Abstract

Aperture Array Photonic Metamaterials:

Theoretical approaches, numerical techniques and a novel

application

by

Eli Lansey

Advisor: Prof. David T. Crouse

Optical or photonic metamaterials that operate in the infrared and visible

frequency regimes show tremendous promise for solving problems in renew-

able energy, infrared imaging, and telecommunications. However, many of

the theoretical and simulation techniques used at lower frequencies are not

applicable to this higher-frequency regime. Furthermore, technological and

financial limitations of photonic metamaterial fabrication increases the im-

portance of reliable theoretical models and computational techniques for pre-

dicting the optical response of photonic metamaterials.

This thesis focuses on aperture array metamaterials. That is, a rectan-

gular, circular, or other shaped cavity or hole embedded in, or penetrating

through a metal film. The research in the first portion of this dissertation
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ABSTRACT v

reflects our interest in developing a fundamental, theoretical understanding

of the behavior of light’s interaction with these aperture arrays, specifically

regarding enhanced optical transmission. We develop an approximate bound-

ary condition for metals at optical frequencies, and a comprehensive, ana-

lytical explanation of the physics underlying this effect. These theoretical

analyses are augmented by computational techniques in the second portion

of this thesis, used both for verification of the theoretical work, and solving

more complicated structures. Finally, the last portion of this thesis discusses

the results from designing, fabricating and characterizing a light-splitting

metamaterial.
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Chapter 1

Introduction

Metamaterials are artificially constructed materials whose extraordinary op-

tical characteristics are primarily due to their structure, not their inherent

material properties. That is, the particulars of a material’s shape or peri-

odicity, for example, have a greater influence on its optical behavior than

its intrinsic, bulk physical properties, such as its conductivity or dielectric

constant. The response of metamaterials are typically strongly dependent on

frequency, angle of incidence, and polarization, and give rise to unique and

interesting effects.

For example, materials such as photonic crystals artificially create an

electronic band structure.[1, 2] Split ring resonators have allowed creation

of negative index materials,[3,4] and tunable response structures when com-

bined with liquid crystals.[5,6] Recently, “cloaking” metamaterials have been

demonstrated.[7–10] Light can be forced to weave around a structure,[11] split

1
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into different beams,[12,13] and even be focused as if by a “superlens.”[14–16]

Finally, the transmission of light through subwavelength apertures in metal is

enhanced with a periodic array.[17] These novel materials have applications

in photonics, telecommunications, sensing, and countless other areas.

Until fairly recently, most metamaterial research involved structures re-

sponsive to microwave or low terahertz radiation. This is primarily due to the

simplicity and relatively low cost of fabrication, and ease of modeling. The

smallest feature sizes of metamaterial structures are typically on the order

of magnitude of one-tenth of the wavelength. For microwave radiation, that

is in the millimeter to centimeter range, and these structures can be made

utilizing simple photo-lithography techniques originally designed for produc-

ing printed circuit boards, or milled out of metal using computer numerical

control (CNC) machines. Even at low terahertz frequencies, the smallest

length scale is on the order of 10-100 microns, which can still easily be made

by ordinary photo-lithography.

Furthermore, at these frequencies most metals are excellent conductors.

This makes it easy to theoretically and computationally model the structures

and their ultimate optical response. The ease of simulation coupled with

simplicity and affordability of fabrication has made microwave and terahertz

metamaterials one of the most active areas of physics research.
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However, for infrared (IR) and visible frequencies, the smallest lengths

are on the order of 10 nm to 1 micron, which leads to devices are signifi-

cantly more difficult and expensive to fabricate as compared the microwave

structures. Typically, initial fabrication of these structures is via electron-

beam lithography which is notoriously slow and expensive, or cutting-edge

interference/holographic lithography which, while cheaper, is very limited in

the type of structures which can be made. These technological and financial

limitations increase the importance of reliable theoretical models and com-

putational techniques for predicting the optical response of photonic meta-

materials.

Furthermore, at these higher frequencies, the properties of metals are

drastically different from lower frequencies. Metals no longer behave as

nearly-perfect conductors; the optical color response of metals reflects this

change, which is why gold looks different than silver, see Fig. 1.1. Further-

more, electromagnetic fields can penetrate metals with skin depths that are

closer to the characteristic lengths of the optical structures. Therefore, many

of the theoretical and simulation techniques used at lower frequencies are not

applicable to this higher-frequency regime.

Nevertheless, optical or photonic metamaterials, which operate in the IR

and visible frequency regimes, show tremendous promise for solving problems



CHAPTER 1. INTRODUCTION 4

(a) Gold.[18] (b) Silver.[19]

(c) Stainless steel.[20] (d) Copper.[19]

Figure 1.1: The optical response of a few metals at visible wavelengths.



CHAPTER 1. INTRODUCTION 5

(a) Top-down view of a sample aperture
array structure.

substrate

superstrate

(b) Cross section of a sample aperture ar-
ray structure.

Figure 1.2: Schematic of a sample aperture array structure from top down
(a) and in cross section (b). The gray region represents the metal, and the
light blue regions are the dielectric-filled apertures, and the white is the
superstrate and substrate.

in renewable energy, imaging, defense, and telecommunications. Because of

the cost of fabrication, the wide variety of applications, and the fundamen-

tally interesting nature of their optical effects, it is important to have theo-

retical and computational approaches to understanding the behavior of these

materials.

The class of metamaterials this dissertation primarily discusses are sub-

wavelength aperture structures. These materials consist of metal films em-

bedded or perforated with apertures or cavities which can be filled with di-

electric materials, see Fig. 1.2 for a sample schematic. Individual apertures



CHAPTER 1. INTRODUCTION 6

can be arranged in a periodic array, forming an “aperture array” metama-

terial. The region above the metal film is termed the superstrate, and the

region below the film (for apertures) is called the substrate.

The research presented in this thesis was motivated by our research

group’s interest in developing a horizontally oriented multi-junction solar

cell. This device uses an aperture array metamaterial structure to spectrally

and spatially split and concentrate light of different bandwidths into different

physical regions of the material. Each of these regions can then be filled with

an absorbing material whose absorption characteristics matches that of the

cavity resonance. We discuss this application in greater depth in Chapter 7.

The research in the first portion of this dissertation reflects our inter-

est in developing a fundamental, theoretical understanding of the behavior

of light’s interaction with these aperture arrays, specifically regarding en-

hanced optical transmission (EOT).1 We outline the general physical and

mathematical framework used in the remainder of this thesis in Chapter 2.

These results are used in developing an approximate skin depth boundary

condition (SDBC) for metals at optical frequencies, discussed in Chapter 3.

The text there is largely based on work published in a paper and conference

1Enhanced optical transmission is often termed “extraordinary optical transmission”
or “anomalous optical transmission”. For the purposes of this thesis, these terms are
interchangeable.
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proceedings.[21, 22] We then develop an effective cavity resonance (ECR)

model for EOT in Chapter 4, which is a comprehensive, analytical explana-

tion of the physics underlying EOT through aperture arrays. This portion

of the text is largely based on work submitted to Physical Review B. These

theoretical analyses are augmented by computational techniques, both for

comparison to our theoretical work and for solving more complicated struc-

tures. We develop a rigorous coupled wave analysis (RCWA) in Chapter 5 for

calculating the optical response of aperture arrays, and in Chapter 6 we show

how to adapt traditional finite element simulation techniques for simulating

these structure in the optical regime. Finally, Chapter 7 discusses our goal of

developing a light splitting and concentrating metamaterial for solar energy

applications. One approach, ultimately limited in applicability, is discussed

in Chapter 8, and another, more promising approach is described in Chap-

ter 9. This former chapter is based in part on conference proceedings,[23]

and the last chapter is largely based on work submitted to Optics Express.



Chapter 2

Summary of relevant physics

In this chapter we lay out a general physical and mathematical construct

that will be used in the rest of this thesis.

2.1 From Maxwell’s equations to a wave equa-

tion

The behavior of electromagnetic (EM) waves is governed by Maxwell’s equa-

tions, a set of four, coupled differential equations, which relate the electric

field, E, and the magnetic induction, B. For the remainder of this thesis

we will assume that all materials are linear, isotropic, and, unless other-

wise specified, non-dispersive. Furthermore, we neglect any magnetic effects,

taking the permeability µ = 1 for all materials. This allows us to use the

8
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macroscopic field quantities,[24]

D = εE (2.1a)

H = B (2.1b)

where, D is the electric displacement, ε is a material’s dielectric constant, and

H is the magnetic field. Note that here, and throughout this dissertation,

unless otherwise specified, we use Gaussian (CGS) units for all quantities.

Maxwell’s equations, in macroscopic form, are

∇ ·D = 4πρfree (2.2a)

∇ ·H = 0 (2.2b)

∇× E = −1

c

∂B

∂t
(2.2c)

∇×H =
4π

c
Jfree +

1

c

∂D

∂t
, (2.2d)

where ρfree is the free charge density and Jfree is the free current density.[24]

Both of these quantities are assumed to be zero for the situations we analyze.

We further assume an implicit exp[−iωt] harmonic time dependence, i.e. a

EM wave, where ω is the (angular) frequency. This allows us to simplify
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Eqs. 2.2,

∇ · E = 0 (2.3a)

∇ ·H = 0 (2.3b)

∇× E = iκ0H (2.3c)

∇×H = −iεκ0E, (2.3d)

where

κ0 ≡
ω

c
. (2.4)

Taking the curl of Eq. 2.3c, making use of vector identities and substituting

Eqs. 2.3d and 2.3a gives

(
∇2 + εκ2

0

)
E = 0. (2.5a)

Similarly, taking the curl of Eq. 2.3d, making use of vector identities and
substituting Eqs. 2.3c and 2.3b gives

(
∇2 + εκ2

0

)
B = 0. (2.5b)

Thus, both the electric and magnetic fields satisfy the Helmholtz wave equa-

tion in three dimensions.

From here on, we choose the z axis as the propagation direction of the

EM wave. The remainder of this chapter involves solving this equation in

particular geometries relevant to the rest of this dissertation. Within the hole
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of an individual aperture or cavity within an aperture array we write solutions

to Eqs. 2.5 in terms of a linear combinations of orthogonal waveguide mode

solutions. Similarly, in the superstrate and substrate – the regions above and

below the metamaterial – we write solutions in terms of linear combinations

of orthogonal Floquet modes, i.e. plane waves satisfying periodic boundary

conditions.

2.2 Waveguide modes

Within the apertures, solving the wave equations Eqs. 2.5 reduces to a stan-

dard waveguide problem. Here we follow Jackson’s general solution ap-

proach.[24] If we separate the fields into components parallel and perpen-

dicular to the z (propagation) axis,

H = Ht + ẑHz (2.6a)

E = Et + ẑEz, (2.6b)

the transverse field components, Ht and Et, are related to the z components,

Hz and Ez by

Ht =
1

εκ2
0 − k2

z

[±ikz∇tHz + iεκ0ẑ ×∇tEz] (2.7a)

Et =
1

εκ2
0 − k2

z

[±ikz∇tEz − iκ0ẑ ×∇tHz] , (2.7b)
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where the choice of sign is positive for upward propagating waves, and neg-

ative for downward propagation, and ∇t represents the transverse gradient

(i.e. we leave off the z-derivative). With an assumed exp[±ikzz] dependence

to the EM fields, we have

Fz(r) = ψ(rt) exp[±ikzz], (2.8)

where Fz is the z-component of the electric (magnetic) field for TM (TE)

modes, and rt is a position vector in the transverse direction. The function

ψ(rt) is a solution to the two-dimensional, transverse wave equation

[
∇2
t +

(
εκ2

0 − k2
z

)]
ψ = 0. (2.9)

We refer to a particular solution ψmn to this equation, subject to appropriate

boundary conditions, as a waveguide mode.

In cylindrical apertures or cavities, the solutions are

ψmn(r, φ) = eimφJm (βmnr) , (2.10a)

where Jm is the m-th Bessel function of the first kind, and the values of m

and the radial wavevectors βmn are determined from boundary conditions.

Due to the cylindrical symmetry in our structures, m is an integer.
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In rectangular apertures or cavities, the solutions are

ψmn(x, y) =
{
A sin

[
β(x)
m x

]
+B cos

[
β(x)
m x

]} {
C sin

[
β(y)
n y
]

+D cos
[
β(y)
n y
]}
,

(2.10b)

where the value of the transverse wavevectors, β
(x)
m and β

(y)
n , and the constants

A, B, C, and D are determined from boundary conditions.

These modes, either rectangular or cylindrical, form a complete, orthog-

onal set of functions, which allows any arbitrary field inside the cavity to be

written as a linear combination of these cavity modes.

2.3 Floquet modes

Within the superstrate and substrate, we assume plane wave solutions to

Eqs. 2.5, where

F (r) = exp
[
ikf · r

]
, (2.11)

represents the spatial dependence of both the electric and magnetic fields

and kf is the propagation wave vector. The electric and magnetic fields’

magnitudes and components are related to each other through Eqs. 2.3.

For the periodic aperture arrays this thesis discusses, each individual

unit cell is indistinguishable from any other unit cell. Therefore, if the fields

are known in one unit cell, they must be identical in every other unit cell
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throughout the structure. Thus, the plane waves above the apertures must

satisfy periodic boundary conditions

F (r) = F (r + Λ1x̂1), (2.12a)

and

F (r) = F (r + Λ2x̂2), (2.12b)

where Λix̂i, for i = 1, 2, are the two-dimensional primitive translation vectors

of the array; i.e. the fields must be identical upon translating the measure-

ment point to the next unit cell. It can be shown by substituting Eq. 2.11

into Eqs. 2.12 that restricting the transverse wavevectors to

kf1m = x̂1 · kf0 +
2mπ

Λ1

, (2.13a)

and

kf2n = x̂2 · kf0 +
2nπ

Λ2

, (2.13b)

is sufficient to satisfy the periodic boundary conditions when m and n are

integers and kf0 is the incident wave vector. Note, that conservation of energy,

or substituting these results in Eq. 2.5 gives

kfzmn =

√
εκ2

0 −
(
kf1m

)2

−
(
kf2n

)2

, (2.13c)
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with

kfmn = kf1mx̂1 + kf2nx̂2 + kfzmnẑ. (2.14)

We refer to a particular plane wave solution

Fmn(r) = exp
[
ikfmn · r

]
. (2.15)

to Maxwell’s equations subject to periodic boundary conditions as a Flo-

quet mode. These Floquet modes are the coherently interfered propagating

diffracted (for real kfz ) and evanescent (for imaginary kfz ) modes.

These modes form a complete, orthogonal set of functions, which allows

any arbitrary field in the superstrate or substrate to be written as a lin-

ear combination of these cavity modes. The particulars of the relationships

between various components of E and H will be discussed in Chapter 5.



Part I

Theoretical Approaches
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Chapter 3

The skin depth boundary
condition

3.1 Introduction

In this chapter we develop an approximate surface boundary condition for

electromagnetic fields at metal walls, applicable at optical frequencies. This

serves two purposes. First, this boundary condition is an integral part of

a comprehensive theoretical explanation of enhanced optical transmission

(EOT), discussed in Chapter 4. Secondly, a boundary condition is required

for use in the numerical technique discussed in Chapter 5, and the insights of

this chapter are applied in Chapter 6 to increase simulation efficiency. This

boundary condition is applied at the metal walls inside a cavity or aperture

in a metal film, and is used with the waveguide solutions of Eqs. 2.10 to find

the unknown coefficients.

17
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In a perfect electric conductor (PEC), charges are free to move, without

any impedance or loss, and instantly respond to any applied field in a manner

which ensures there is no electromagnetic field inside the conductor.[24] In

real metals, however, electrons have a characteristic relaxation time, and do

not respond instantly to incident fields.[25] Nevertheless, at very low frequen-

cies, the electron relaxation time is much smaller than the time variation of

the fields, and the response time is effectively instantaneous. Nevertheless,

there remain bulk resistive properties of metal which manifest themselves as

surface losses; these effects cause the dominant differences between metals at

radio or microwave frequencies.

At higher frequencies, however, the optical properties of metals change

drastically. The simplest empirical example of this is that gold, copper,

and silver each look different from one another, see Fig. 1.1. This is due

to the fact that the dielectric properties of metals vary drastically over the

optical spectrum, see Fig. 3.1.[26] Fields do penetrate into metals at optical

frequencies, decaying exponentially with a characteristic “skin depth”, δ.[24]

The skin depth at various frequencies can be calculated using

δ(ω) =
c

ωκ(ω)
, (3.1)
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where

κ(ω) =

√
1

2

√
= [εm(ω)] 2 + < [εm(ω)] 2 − 1

2
< [εm(ω)], (3.2)

is the imaginary part of the index of refraction of the metal,[27] and where

the value of the complex (dispersive) dielectric permittivity, εm = ε′m + iε′′m,

of the metal can be found experimentally or through an explicit theoretical

expression, such as a Drude model,

εm(ω) = 1−
ω2
p

ω(ω − iωτ )
, (3.3)

where ωp is the plasma frequency and ωτ is the collision frequency.[26]

One recent approach toward developing a boundary condition for the

metal walls treats the cavity-metal structure at optical frequencies as a di-

electric core-cladding fiber optic (FO) analogue and uses established tech-

niques to numerically solve for the resulting modal dispersion curves.[28–30]

The calculated modes are then analogous to propagating fiber optic modes,

with TE, TM, or hybrid TE/TM-type waveguide modes.

The FO approach has the benefit of appealing to the vast body of work

involving fiber optics, but it has a few notable limitations. First, if looking

for real propagation modes, it numerically requires using a lossless Drude

model for the metal dielectric, which does not adequately match the actual

physical properties of most metals at optical frequencies. Introducing loss



CHAPTER 3. THE SKIN DEPTH BOUNDARY CONDITION 20

200 400 600 800 1000

1
2

5
10
20

50
100
200

f @THzD

-
Ε'

m

Ag
Al
Au
Cu

(a) Real component of metal dielectrics.

200 400 600 800 1000

0.1

0.5
1.0

5.0
10.0

50.0

f @THzD

Ε'
' m

Ag
Al
Au
Cu

200 600 1000
0

5

10

f @THzD

Ε'
' m

(b) Imaginary component of metal dielectrics.

Figure 3.1: The real (a) and imaginary (b) parts of metal dielectrics at optical
frequencies.[26]
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requires finding all complex roots to the equation, which in general is not

a trivial task. Furthermore, while this approach can be used for cylindrical

apertures, it is difficult to generalize for other geometries.[31,32] Finally, the

dispersion curves must always be calculated numerically using this method,

and any effects due to changing geometries must be extracted empirically.

Nevertheless, modal dispersion analysis is a useful approach for deter-

mining some properties of the waveguide modes that can be excited within a

particular aperture. In this chapter we present a surface approximation used

for calculating the modal dispersion relationship of cylindrical and rectan-

gular apertures in real metals. The goal is to find an equivalent waveguide

geometry which accurately captures the properties of the aperture as well as

the effect of the real metal walls. It has already been shown with stacked pho-

tonic crystal nanocavities that resonance properties of a complicated struc-

ture can be accurately described by determining an effective resonant cavity

with PEC walls.[33] Here, too, we find an effective PEC cavity using the

metallic skin depth as the limiting length scale at the cavity walls, hence

“skin depth boundary condition” (SDBC).

This analysis carries all the benefits of dispersion analysis as discussed in

reference [30] for example, with the added benefit of determining the evanes-

cent modes and including real metal parameters. This approach describes
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the fundamental behavior of waveguide modes at optical frequencies using

approximate boundary conditions. Unlike many other approaches, this the-

oretical model directly predicts the dispersion curve, and its dependence on

aperture dimensions and metal parameters, without needing to rely on inter-

pretation of numerical solutions.

3.2 Boundary conditions

Although the metallic skin depths at optical frequencies can be large, beyond

that depth we expect metals to behave like perfect conductors, i.e. the fields

drop rapidly to zero. When the skin depth, δ, is significantly smaller than

the characteristic aperture dimension, a, this allows significant simplification

of the resulting equations. To compare these sizes, we note that a is typically

on the order of the wavelength, λ. Fig. 3.2 shows the variation of the ratio

δ/λ for a few metals over a range of frequencies. Note that this ratio is small

enough that we can consider the contribution of the fields in the metal as a

correction to the dominant waveguide fields, yet not so small that this effect

would be negligible.

To determine the dimensions of the effective cavity cross-section, we note

that the fields inside the metal walls of a cylindrical cavity can be written

in terms of Hankel functions of the first kind,[28] and as sine or cosine func-
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Figure 3.2: The ratio of δ/λ for a few metals over a range of frequencies.

tions weighted by a decaying exponential in a rectangular cavity.[24] In both

of these cases, the fields decay extremely rapidly upon entering the metal.

Thus, the majority of the fields in the metal are constrained within a very

small region close to the surface of the aperture. We make the reasonable

assumption that upon reaching one skin depth into the metal we have ac-

counted for the contribution of the fields within the metal, and beyond that

point it is effectively a PEC.

Then, for an arbitrary aperture, we can apply the perfect electric con-

ductor boundary conditions:

n̂× E = 0, (3.4a)

n̂ ·H = 0, (3.4b)



CHAPTER 3. THE SKIN DEPTH BOUNDARY CONDITION 24

where n̂ is a unit normal to the cavity wall, at a depth of δ into the metal,

rather than at the cavity walls themselves, see Fig. 3.3(a). We will derive

results in this chapter for cylindrical and rectangular apertures.

It is important to highlight that this analysis does not describe the com-

plete details of the fields’ behavior within the metal. This is different than

other approaches discussed in the introduction that do, in fact, describe the

fields in the metal explicitly. Instead we consider only the overall effect that

the imperfect conductor has on the behavior of the fields within the cavity

itself. This simplification allows us to avoid relying on numerical techniques

while still determining the consequences of these effects.

3.3 Dispersion analysis

Using conservation of energy, or by substituting Eqs. 2.10 into Eq. 2.9, we

get the dispersion relations,

ε
ω2

c2
= k2

z + β2, (3.5a)

for cylindrical apertures, and

ε
ω2

c2
= k2

z +
[
β(x)
m

]2
+
[
β(y)
n

]2
(3.5b)

for rectangular apertures. For what follows we will consider apertures filled

with a dielectric material of permittivity ε, embedded in a metal film with
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Figure 3.3: Schematic of general (a), cylindrical (b), and rectangular (c)
waveguide geometries and solution strategy. The gray region represents the
metal, the white region is the dielectric-filled aperture, and the dashed curve
represents a skin depth inside the metal.
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complex dielectric permittivity εm.

Equations 3.5 have the benefit of solving for all possible modes, both

propagating (real kz) and evanescent (imaginary kz). It is well known that

near-field evanescent fields can contribute significantly to the ability of struc-

tures to couple to incident light as well as transmitted waves.[34,35] Further-

more, as discussed earlier, the decay length can be many multiples of film

thickness in thin films, whereby evanescent modes within an aperture may

directly contribute to EOT. Hence, solving for all modes, both propagating

and evanescent, produces a more complete picture of the resonance behav-

ior of these apertures. We now use the SDBC to evaluate these dispersion

relations.

3.3.1 Cylindrical apertures

Here we discuss a cylindrical aperture of radius a, see Fig. 3.3(b). Waveguide

modes are given in Eq. 2.10a. We find β by evaluating Jm [β(a+ δ)] = 0 for

TM modes and J ′m [β(a+ δ)] = 0 for TE modes. Applying these conditions

gives

β =

(
1

1 + ξ

)
β0 (3.6)
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where

βTM
0 ≡ χmn

a
(3.7a)

βTE
0 ≡ χ′mn

a
(3.7b)

with χmn being the nth root of the mth Bessel function, χ′mn being the nth

root of the derivative of the mth Bessel function, and

ξ ≡ δ/a. (3.8)

This is a general analytical result for any radius and any metal; for a partic-

ular radius and metal combination one need only numerically calculate the

ratio ξ to determine the particular shift in modal dispersion.

Note, that for a perfect conductor δ → 0 so ξ → 0, and we recover

the well-known PEC waveguide modes β0.[24] As the relative length of the

skin depth increases (i.e. the metal becomes increasingly less PEC-like), ξ

increases, and the magnitude of the transverse wavevector decreases. This,

in turn, shifts the dispersion curve toward lower frequencies (see Fig. 3.4(a),

inset).

3.3.2 Rectangular apertures

Here we discuss a rectangular aperture with sides of length a and b, see

Fig. 3.3(c). Waveguide modes are given in Eq. 2.10b, shifting the origin to
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the center of the aperture. That is,

ψ = ψmn(x+ a/2 + δ, y + b/2 + δ). (3.9)

We find β(x) and β(y) by evaluating ψ(−a/2 − δ, y) = 0, ψ(a/2 + δ, y) = 0,

ψ(x,−b/2−δ) = 0, and ψ(x, b/2+δ) = 0 for TM modes, and ∂
∂(−x)

ψ(−a/2−

δ, y) = 0, ∂
∂x
ψ(a/2+δ, y) = 0, ∂

∂(−y)
ψ(x,−b/2−δ) = 0, and ∂

∂y
ψ(x, b/2+δ) = 0

for TE modes. Applying these conditions gives B = D = 0 for TM modes

and A = C = 0 for TE modes, and

β =

(
1

1 + 2ξ

)
β0, (3.10)

for both the x or y wave vectors, where

β
(x)
0 ≡ mπ

a
(3.11a)

β
(y)
0 ≡ nπ

b
(3.11b)

with

ξ(x) ≡ δ/a (3.12)

ξ(y) ≡ δ/b. (3.13)

This is a general analytical result for any lengths and any metal; for a par-

ticular size and metal combination one need only numerically calculate the
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ratios ξ to determine the particular shift in modal dispersion. The extra fac-

tor of ξ in Eq. 3.10 as compared to the cylindrical result (Eq. 3.6) highlights

the fact the fields penetrate an extra distance at two surfaces, rather than at

the single surface of a cylinder.

Note, that for a perfect conductor δ → 0 so ξ → 0, and we recover

the well-known PEC waveguide modes β0.[24] As the relative length of the

skin depth increases (i.e. the metal becomes increasingly less PEC-like), ξ

increases, and the magnitude of the transverse wavevector decreases. This,

in turn, shifts the dispersion curve toward lower frequencies (see Fig. 3.4(b),

inset).

3.3.3 Sample comparison with simulation

Figure 3.4 shows a number of dispersion curves for apertures filled with a

dielectric ε = 3, in silver, using a Drude model (Eq. 3.3) for the metal

dielectric with ωp = 1.37× 1016 s−1 and ωτ = 7.29× 1013 s−1. The cylindrical

hole (Fig. 3.4(a)) has a radius a = 190 nm, and the square hole (Fig. 3.4(a))

has a side length a = b = 190 nm. The solid curves are calculated using this

method, along with finite element full-wave eigenmode simulations of the

same structure. As the figure shows, there is strong agreement between the

theoretical prediction (solid curves) and the simulation results (points). The
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inset shows the curves predicted by this model (solid) as well as the curves

using a PEC boundary condition (dotted). The shift to lower frequencies

seen here is due to the effectively larger cavity.

There is one dispersion curve not accounted for by this model in the

rectangular geometry (green in Fig. 3.4(b)). It seems that the degenerate

TE/TM 11 mode is slightly perturbed under the TM polarization in a manner

that is not accounted for by this model. Further analysis is required to fully

determine the cause of this mode.

3.4 Cutoff dependence

Using the cutoff condition, kz = 0, we can solve Eqs. 3.5 for the cutoff

frequency, ωcutoff, of a mode in terms of the dimensions of an aperture which

supports it.

Practically, due to the frequency dependance of δ, for cylindrical aper-

tures, it’s easier to directly calculate the radius

a =
c

ωTM
cutoff

χmn√
ε
− δ

(
ωTM

cutoff

)
(3.14a)

a =
c

ωTE
cutoff

χ′mn√
ε
− δ

(
ωTE

cutoff

)
(3.14b)

in terms of ωcutoff. Note how apertures with smaller radii (by a subtractive

factor of δ) permit higher frequency resonances as compared to the perfect
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Figure 3.4: The real (solid) and imaginary (dashed) dispersion curves cal-
culated and simulated (points) for cylindrical (a) [square (b)] apertures of
radius [side length] a = 190 nm filled with a dielectric ε = 3 embedded in
Drude silver. Here kp ≡ ωp/c. Inset shows results using this method (solid)
compared to PEC modal dispersion (dashed).
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electric conductor condition. Here, too, when δ → 0 as in a PEC we recover

the well-known cutoff result. Fig. 3.5(a) shows a plot of fcutoff for a few

modes with cylindrical apertures, filled with a dielectric ε = 3 embedded

in Drude silver, as a function of the radius a. Note that for a given radius

the cutoff frequency is lower using this model (solid) compared to the PEC

values (dashed), again due to the effectively larger cavity size.

Similarly, for rectangular apertures, we calculate the cutoff frequency:

ωcutoff =
c√
ε

√(
β

(x)
m

)2

+
(
β

(y)
n

)2

. (3.15)

Note that the values of β, which depend explicitly on a and b, also implicitly

depend on ω, and the roots can be found using various methods. Fig. 3.5(b)

shows a plot of fcutoff for a few modes with square apertures, filled with a

dielectric ε = 3 embedded in Drude silver, as a function of the side length

a. Note that for a given length the cutoff frequency is lower using this

model due to the effectively larger cavity size. Additionally, as the cavity

size increases, the cutoff approaches the PEC value, as the contributions of

the metal become increasingly negligible.

In both of these cases, however, if δ(ω) does not vary greatly over the

range of frequencies, this can be viewed as an approximation for the cutoff

frequency, without further calculations. It is worthwhile to note that the



CHAPTER 3. THE SKIN DEPTH BOUNDARY CONDITION 33

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

æ

æ

æ

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

10 20 50 100 200 500
200

400

600

800

1000

1499

749

500

375

300

a @nmD

f c
ut

of
f

@th
zD

Λ
cu

to
ff

@nm
D

æ TE11

à TE12

ì TM11

(a) Results for cylindrical apertures.
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(b) Results for square apertures.

Figure 3.5: The cutoff frequency fcutoff in cylinders (a) [squares (b)] filled
with a dielectric ε = 3 as a function of the radius [length] a for a few modes
in silver. The solid lines are calculated using the method described in this
chapter, the dashed lines are curves using for a perfect conductor.
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general trend of these results (i.e. cutoff shifted toward lower frequencies)

has been known empirically for some time, from experimental and numerical

methods.[36] Here, though, we predict these properties in an intuitive analyt-

ical form, based on a new approximation for the interaction of the waveguide

fields with realistic metals. Therefore, we view those established results as a

confirmation of the theoretical approach developed here.

3.5 Effect on fields and induced charges and

currents

Using Eqs. 2.10 with Eqs. 3.6 or 3.10 allows us to calculate the field profiles

within the apertures. Fig. 3.6 shows some calculated cylindrical ψ fields for

a few TM (a) and TE (b) modes for ξ = 0.15, and Fig. 3.7 shows some

calculated rectangular ψ fields for a few TM (a) and TE (b) modes for ξ(x) =

0.15 and ξ(y) = 0.21. Note that these fields are only plotted within the cavity,

and not into the cavity walls, as we have not analyzed the detailed behavior

of the fields within the metal, only the net effect it has on the cavity response.

Additionally, note that the fields do not drop to zero at the cavity walls as

they do for a perfect conductor.
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(a) TM mode fields.
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(b) TE mode fields.

Figure 3.6: Calculated TM (a) and TE (b) ψ fields in the cylindrical geom-
etry, with ξ = 0.15.
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(a) TM mode fields.
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(b) TE mode fields.

Figure 3.7: Calculated TM (a) and TE (b) ψ fields in the rectangular geom-
etry, with ξ(x) = 0.15 and ξ(y) = 0.21.
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3.5.1 Cylindrical apertures

For ξ � 1, we can expand Eq. 2.10a in powers of ξ. Keeping through

quadratic terms, we have

ψ(r, φ) = {Jm (β0r)−
1

2
ξ(ξ − 2)β0rJm+1 (β0r)

+
1

2
ξ
[
m(mξ + ξ − 2)− ξβ2

0r
2
]
Jm (β0r)}eimφ. (3.16)

This corresponds to the perfect electric conductor field Jm (β0r) plus a cor-

rection due to the additional buildup of charges in the metal.

Fig. 3.8 shows a plot of ψTM for m = 1, n = 2 and ξ = 0.12. If the

dielectric of the metal is calculated using Eq. 3.3 with a = 190 nm, this value

of ξ corresponds to f = 611 THz. The thin line is the PEC field component

of Eq. 3.16, with the dashed line being the correction due to our method.

The thick black line corresponds to the complete field behavior (i.e. the PEC

contribution plus the correction). We have additionally plotted the decay of

the fields into the metal walls. Note that the dominant contribution to total

field strength is from the portion of the field concentrated within the cavity,

with only small portions of the field penetrating into the metal.

Equation 3.16 shows that for good conductors (i.e. small ξ) there is no

shift in the resonance of the cavity for the lowest order modes, while there is

a change in the overall field behavior accounting for the buildup of additional
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Figure 3.8: The radial field dependance of ψTM for a TM mode using Eq. 3.16
for m = 1, n = 2, and ξ = 0.12. The thin line is the perfect conductor
waveguide mode, the dashed line is the contribution due to additional charges
in the metal, and the thick line is the superposition of the two. The vertical
dashed lines indicate the positions of the cavity walls. The rapid decay of
the field inside the cavity walls is also plotted.
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surface charges. For larger ξ or higher order modes, however, it is necessary

to use the complete expressions Eqs. 2.10a and 3.6 to calculate the dispersion

relation. Additionally, although ξ varies as a function of frequency, if there

is minimal variation of this value over the frequency region of interest, it is

straightforward to calculate the shift in resonance using Eq. 3.6.

Furthermore, note that at the metal surface, r = a, there is a nonzero Ez

(Hz) for TM (TE) field equal to

Ez
Hz

}
= −1

2
ξ(ξ − 2)χmnJm+1[χmn]eimφ. (3.17)

This correction can be thought of as the contribution to the field from an

effective distribution of surface charges, σSDBC, on the surface of the metal

originating from the buildup of charge in the region of field penetration into

the metal walls. This is in addition to the surface charges, σPEC, which

arrange themselves on a perfect conductor to counterbalance the incident

field. Then, the total surface charge on the metal is

σ = σPEC + σSDBC. (3.18)

We find the value of σ using the continuity expressions

n̂ · (D2 −D1) = 4πσ (3.19)

resulting from Gauss’s law,[24] where n̂ is a unit normal from region 1 to
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region 2. Requiring the field inside the metal (D2) to drop to zero, we get

σPEC =
iεkz
4π

β0

β2
Jm+1[χmn]eimφ, (3.20a)

σSDBC = −1

2
ξ2
(
χ2
mn −m2

)
σPEC. (3.20b)

where the value of kz is determined by Eq. 3.5a and β by Eq. 3.6. These

expressions result from first operating on Eq. 2.10a, and then expanding in

powers of ξ. Note that χ2
mn > m2, so this additional effective surface charge

distribution is always of opposite sign to the perfect conductor distribution.

We can likewise break the induced effective surface current,

J = JPEC + JSDBC, (3.21)

into the current, JPEC, present in a perfect conductor and the surface plasmon

current JSDBC. Using the continuity expressions,

n̂× (B2 −B1) =
4π

c
J, (3.22)

requiring the field inside the metal (B2) to drop to zero, we get currents

JPEC = ẑ
icεκ0

4π

β0

β2
Jm+1[χmn]eimφ, (3.23a)

JSDBC = −1

2
ξ2
(
χ2
mn −m2

)
JPEC, (3.23b)

traveling upwards and downwards. Here the additional induced current trav-

els in the opposite direction to the current induced in a perfect conductor.
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This decrease in current is due to the resistive losses occurring in the region

of field penetration into the metal.

3.5.2 Rectangular apertures

For ξ � 1, we can expand Eq. 2.10b in powers of ξ. Keeping through linear

terms, we have

ψTM(x, y) = sin[β
(x)
0 x′] sin[β

(y)
0 y]

− ξ(x) 2πmx

a
cos[β

(x)
0 x′] sin[β

(y)
0 y′]

− ξ(y) 2πny

b
sin[β

(x)
0 x′] cos[β

(y)
0 y′], (3.24a)

and

ψTE(x, y) = cos[β
(x)
0 x′] cos[β

(y)
0 y′]

+ ξ(x) 2πmx

a
sin[β

(x)
0 x′] cos[β

(y)
0 y′]

+ ξ(y) 2πny

b
cos[β

(x)
0 x′] sin[β

(y)
0 y′], (3.24b)

where x′ ≡ x+a/2 and y′ ≡ y+ b/2. This corresponds to the perfect electric

conductor fields sin[β
(x)
0 x′] sin[β

(y)
0 y′] or cos[β

(x)
0 x′] cos[β

(y)
0 y′] plus a correction

due to the additional buildup of charges in the metal.

Fig. 3.9 shows a plot of ψTE as a function of x when y = 0 for m = 1,

n = 0 and ξ(x) = 0.12. If the dielectric of the metal is calculated using



CHAPTER 3. THE SKIN DEPTH BOUNDARY CONDITION 42

0- a
2 - a

4 0 a
4

a
2 ∆-∆

-1.0

-0.5

0.0

0.5

1.0

x

Ψ
10T

E
Hx,

0L

Figure 3.9: The x field dependance of ψTE along y = 0 for a TE mode
using Eq. 3.24 for m = 1, n = 0, and ξ(x) = 0.12. The thin line is the
perfect conductor waveguide mode, the dashed line is the contribution due
to additional charges in the metal, and the thick line is the superposition of
the two. The vertical dashed line indicates the position of the cavity walls.
The rapid decay of the field inside the cavity walls is also plotted.

Eq. 3.3 with a = 190 nm, this value of ξ(x) corresponds to f = 611 THz. The

thin line is the PEC field component of Eq. 3.24, with the dashed line being

the correction due to our method. The thick black line corresponds to the

complete field behavior (i.e. the PEC contribution plus the correction). We

have additionally plotted the decay of the fields into the metal wall. Note

that the dominant contribution to total field strength is from the portion of

the field concentrated within the cavity, with only small portions of the field

penetrating into the metal.

Equation 3.24 shows that for good conductors (i.e. small ξ) there is no
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shift in the resonance of the cavity for the lowest order modes, while there is

a change in the overall field behavior accounting for the buildup of additional

surface charges. For larger ξ or higher order modes, however, it is necessary to

use the complete expressions Eqs. 2.10b and 3.10 to calculate the dispersion

relation. Additionally, although ξ varies as a function of frequency, if there

is minimal variation of this value over the frequency region of interest, it is

straightforward to calculate the shift in resonance using Eq. 3.10.

Furthermore, note that at the metal surface, there is a nonzero Ez (Hz)

for TM (TE) field. For example, at the x = a/2 surface, this field is equal to

Ez = −ξ(x) 2πmx

a
(−1)m sin[β

(y)
0 y′] (3.25a)

Hz = ξ(y) 2πny

b
(−1)m sin[β

(y)
0 y′]. (3.25b)

This correction can also be thought of as the contribution to the field from

an effective distribution of surface charges, σSDBC, on the surface of the metal

originating from the buildup of charge in the region of field penetration into

the metal walls. This is in addition to the surface charges, σPEC, which

arrange themselves on a perfect conductor to counterbalance the incident

field. We can find the value of the total surface charge, σ, on each wall using

Eq. 3.19. We can likewise calculate the induced effective surface current J

using Eq. 3.22. We do not carry out these calculations here, as the resulting



CHAPTER 3. THE SKIN DEPTH BOUNDARY CONDITION 44

expressions are quite messy (there are four of each quantities for each of the

four walls) and do not yield any further fundamental insight beyond that of

the cylindrical geometry.

3.6 Attenuation

We can also use these results to calculate the attenuation constant, α, i.e.

the time-averaged fractional power lost per unit length of the cavity. The

time-average power absorbed per unit length along the aperture is

Pabs =
ωδ

16π

∮ ∣∣H‖∣∣2 ds, (3.26)

where the integral is taken around the boundary of the aperture.[24] The

time-averaged power transmitted per unit length, Ptrans, is found by taking

the ẑ component of the time-averaged Poynting vector,

S =
1

2

c

8π
Re [E×H∗] , (3.27)

integrated over the area of the aperture. The ratio

α ≡ Pabs

Ptrans

(3.28)

is the power lost per unit length in propagating modes, normalized with

respect to the amount of power flowing down the cavity. Then, the power,

P , decays along the aperture as a function of z by

P (z) = P0e
−αz, (3.29)
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where P0 is the incident power.

For cylindrical apertures,
∣∣H‖∣∣2 = |Hφ|2 + |Hz|2, whence

αTM = ξεκ2
0 (aβBm−1 −mBm) 2

[
kz
(
a2β2B2

m−1 +B2
m

(
a2β2 − 2(−1)mm

)
+ 2aβ ((−1)m −m)BmBm−1

)]−1

, (3.30)

and

αTE = ξB2
m

(
a2β4 +m2k2

z

) [
kz
(
2a ((−1)m +m) βB−1+mBm

+
(
−2m ((−1)m + 2m) + a2β2

)
B2
m + a2β2B2

1+m

)]−1

, (3.31)

where Bm ≡ Jm (βa). These expressions can also be expanded in powers of

ξ to yield an approximate expression for α. Furthermore, α is proportional

to ξ, so for a PEC α is zero, and the structure is lossless. For rectangular

aperture we must integrate the components of H parallel to the wall over all

four edges of the aperture. The resulting expressions are quite messy, and do

not yield any additional insight. Nevertheless, Fig. 3.10 shows the variation

of α as a function of frequency for cylindrical, as well as square apertures.

Note that for square apertures the degenerate TM11 and TE11 modes have

different attenuation characteristics; this may be another manifestation of

the effect that causes the mode splitting discussed earlier.

After the initial drop in loss above the cutoff, α increases with frequency

due to larger portions of the field penetrating into the metal, as seen in
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Figure 3.10: The fractional power loss α per unit length of a cylindrical (a)
[square (b)] aperture of radius [side length] a = 190 nm filled with a dielectric
ε = 3 embedded in Drude silver. The loss is plotted for the TE11 and TM11

modes.
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Fig. 3.10. Note that this expression only holds above the cutoff frequency.

Furthermore, for an aperture of a particular size there is a frequency at which

the loss is minimized. This frequency can, in principle be found by finding

the root of

∂α

∂a
= 0 (3.32)

in terms of ω. These solutions will depend on the explicit form of ξ(ω) for a

given metal, as well as the particular radius of interest.

It is worthwhile to note that there is no minimum to α with respect to

the aperture radius. For larger cavity size, α tends towards zero, as the

propagating energy is proportional to a2, while, for a particular frequency,

the skin depth is fixed. Thus, the relative amount of loss decreases with

increasing size.

3.7 Summary and conclusions

We have presented a new model for the interaction of electromagnetic fields

in small holes in real metals at optical frequencies. Unlike other approaches,

this simple model allows direct analytic predictions of various resonance prop-

erties, without needing to rely on numerical coupled-wave or finite element

analyses or other numerical techniques. We have shown, through illustrative

examples with silver, strong agreement between the theory and simulated
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results for both cylindrical and square apertures, and some predictions of

this model are confirmed by long-known empirical results, as well.

Although the model was applied to apertures in silver, another major

advantage of this approach is that the analytical form of the field response

of all metals and cylindrical apertures is the same. The differences between

various metals and frequencies are determined only by the value of ξ. This

allows easy and accurate prediction of waveguide resonance properties, with-

out relying on complicated or time-consuming numerical calculations and

simulation. Furthermore, it is easy to measure values of metal dielectrics

and calculate values for ξ to incorporate in this analysis, and not rely on a

Drude model.

This approach can also be generalized to apertures of arbitrary shape.

The general solutions to the wave equation (Eq. 2.9) determine the func-

tional form of the cavity modes, while the dispersion relation of Eq. 3.5a is

generalized to

ε
ω2

c2
= k2

z + γ2, (3.33)

where γ, the generalized transverse wavevector, replaces the radial wavevec-

tor β. The value of γ is found by evaluating the perfect conductor boundary

conditions (Eqs. 3.4) at a distance δ into the cavity walls, see Fig. 3.3(a).

For particular geometries, it is also possible to decouple TE and TM modes
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as we have here.

Furthermore, the results derived here can be used in various numerical

techniques. First of all, these results can be directly implemented in a rig-

orous coupled wave analysis (Chap. 5). In those calculations the SDBC and

the transverse wavevectors are used to account for the metal properties in

the field expansion. On the other hand, the rationale behind this approach

is useful for simplifying complicated finite element calculations (Chap. 6).

Finally, these results will be used as part of a larger theoretical framework

which completely describes enhanced optical transmission, i.e. to find the

resonance and transmission response of apertures embedded in metallic films

of finite thickness. For example, additional restrictions can be placed on kz

transforming the waveguide into a resonant cavity. These restrictions arise

from boundary conditions across the aperture openings. A detailed analysis

of these is discussed next in Chapter 4.



Chapter 4

The effective cavity resonance

4.1 Introduction

In this chapter we present a novel theoretical approach for modeling the

resonant properties of transmission through subwavelength apertures pene-

trating metal films. We show that cavity mode theory applies to an effective

resonant cavity whose dimensions are determined by the aperture’s geom-

etry and the evanescent decay lengths of the diffracted waves above and

below the aperture. This method suggests a concrete physical mechanism

for the enhanced transmission observed in periodic aperture arrays; namely

it is the evanescently scattered light, localized in the near field at metal sur-

faces, which couples into the apertures. Furthermore, it analytically predicts

the frequencies of peaks in enhanced transmission, the quality factor of the

peaks, and explains their dependence on variation in the hole radius, peri-

50
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odicity, and the film thickness over a wide range of geometries. This model

demonstrates strong correlation to simulation and existing results with high

degree of accuracy.

4.1.1 Enhanced optical transmission

Enhanced optical transmission (EOT) is a electromagnetic effect, first re-

ported by Ebbesen and coworkers in 1998 for visible light,[17] and in 1973

by Ulrich and Tacke for microwave frequency radiation.[37] In this effect, the

fraction of incident electromagnetic radiation that is transmitted through a

grating or array of subwavelength grooves or holes perforating a metal film or

plate is larger than to be expecting considering the fractional surface area of

the openings, hence the term “enhanced.” That is, even if the open portions

of the structure only make up 50% of the surface area of the top surface, for

example, greater than 50% of incident light will be transmitted through. For

microwave structures, where metals are nearly-lossless, the total transmis-

sion through the arrays can approach 100%. Additionally, the transmission

through an array of holes is enhanced compared to the transmission through

a single aperture.

There are a few properties of EOT that are worth discussing. First of

all, this effect is generally a resonant-type effect, where the transmission
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enhancement occurs in some well-defined, narrow bandwidth around a reso-

nance peak. This should be contrasted to transmission through a waveguide

where light is guided at any frequency above cutoff. Furthermore, the posi-

tion and width of these peaks are dependent on the structure’s materials and

geometry: periodicity, cavity cross-sectional shape (i.e. rectangular, circular),

hole depth (i.e. metal thickness), and the choice of metal and dielectrics in,

above, and below the apertures. Varying each of these parameters changes

the resonance properties differently. As an extreme example, the transmis-

sion effect is “enhanced” with periodic structures as compared to a single

aperture or groove (i.e. infinite periodicity).

Many theories have been proposed for the underlying physical mechanism

(or mechanisms) that cause EOT; different approaches are applicable with

different configurations. For example, Bethe’s calculations apply to a single,

extremely small hole through an infinitely thin perfect electric conducting

(PEC) film.[38] Others have generalized this approach to account for periodic

arrays,[39] and finite thicknesses.[40] However, these approaches are limited

to extremely small holes and perfect conducting metals, two situations which

are not typically realized.

To avoid the geometric and material limitations of approaches based on

Bethe’s theory, one common argument supposes that it is the excitation
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of surface plasmons (SP) on the periodic surface, both for one-dimensional

gratings or two-dimensional aperture arrays, which allows coupling of light

from an incident wave through the holes.[41–46] This approach explains the

role that structure periodicity plays in EOT. However, it does not account for

the variation in EOT due to aperture shape.[47, 48] Furthermore, EOT has

been demonstrated with PEC structures, as well as non-metallic materials

where SP contributions are nonexistent.[34, 49,50]

Another approach describes the contribution to EOT of propagating wave-

guide modes along the aperture.[21,29,51–53] These arguments suppose that

incident light can only propagate through a film and contribute to EOT in a

manner which satisfies a propagating waveguide condition along the length

of the aperture. These approaches capture some limitations that the individ-

ual cavity structures place on allowed frequencies which demonstrate EOT,

but do not directly explain the effect of periodicity on EOT or predict the

locations of specific peaks in EOT and their dependence on cavity shapes.

In spite of the theoretical uncertainty regarding the mechanisms of EOT,

the effect has been studied extensively through use of a semi-analytical cou-

pled wave analysis,[46, 54, 55] by many different finite element or finite dif-

ference numerical simulation approaches,[56, 57] and experimentally.[41–44,

46, 47] These methods all empirically shed light on the dependence of EOT
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on structure periodicity and cavity shapes, but do not provide an intuitive,

or fundamentally clarifying approach toward the mechanisms of EOT. Fur-

thermore, these approaches are often computationally and experimentally

expensive to carry out.

Thus, a complete first-principles approach to explain the effect of EOT

through two-dimensional arrays subwavelength holds in metal films is desir-

able. In this chapter we develop a novel approach which analytically and in-

tuitively explains the physical mechanism of EOT, and completely explains

the aforementioned dependence on structure periodicity and cavity shape.

The theory is accurate over an extremely broad range of geometrical con-

figurations. In this approach, we extend the idea of waveguide dispersion

analysis to account for finite film thicknesses.

For a finite film, an impedance mismatch between the superstrate and

the metal at the top and bottom of the cavities introduces a restriction

on the possible wavelengths that can exhibit resonant behavior along the

z-direction. It is at these resonances where light is strongly coupled into

and through the apertures, where peaks in EOT are manifest. There have

been some successful studies of cavity-type resonances for one-dimensional

gratings, under limited geometrical conditions;[11, 36, 58–62] we extend this

approach to two-dimensional arrays.
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Figure 4.1: A schematic of periodic cylindrical channels in a thin film is shown
from top down (a) and in cross section (b). The gray region represents the
metal, the light blue regions are the dielectric-filled apertures, and the white
is the superstrate and substrate.

Our goal is to describe an effective resonant cavity which has resonant

properties that match that of the actual aperture array. It should be em-

phasized that this is not an actual cavity resonance, i.e. the fields do not

demonstrate standing-wave behavior and there is a flow of energy along the

aperture, but an effective cavity resonance (ECR) where the physical extents

of the equivalent cavity are determined by the metamaterial’s structural and

material properties.
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4.2 Effective cavity resonance solutions

Here we discuss cylindrical apertures of radius a, filled with dielectric εc em-

bedded in a metal film of thickness h, arranged in an infinite square periodic

lattice of period Λ, with a dielectric, εs, above and below the film, see Fig. 4.1.

The approximation of infinite lattice is valid in practice as long as the size

of an complete hole array is significantly larger than the wavelength of in-

cident light, where we can neglect edge effects.[25] We additionally neglect

any magnetic effects, taking µ = 1 for all materials, and assume an implicit

exp[−iωt] harmonic time dependence.

The dispersion relation of light within these structures is given by Eq. 3.5a.

The transverse wavevector β is found by evaluating boundary conditions at

the cavity’s metal walls, as discussed in Chapter 3. The remainder of this

chapter involves determining an appropriate restriction on kz due to a finite

film thickness. If the restriction forces kz to take discrete values, it changes

the allowed ω in Eq. 3.5a from a smoothly varying range of values to distinct

resonance frequencies.

We emphasize again that this effective cavity resonance is not an actual

cavity resonance. That is, there is no “standing-wave” behavior, as light

is not stationary within the aperture, but instead propagates through it.
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Nevertheless, there are still spatial restrictions to the fields which introduce a

buildup in field strength within the cavity and can be modeled as an effective

resonant cavity.

4.2.1 A simple, illustrative model

We first investigate a simple model for a restriction on kz which sets up a

resonance condition, which we will study in greater detail in Section. 4.2.2,

and serves to illustrate our general approach. When incident light excites

fields within the cavity, they induce surface currents (Eq. 3.21) oscillating

upwards and downwards along the cavity walls. These currents have only

a z-component, and, in the absence of charges ejected vertically from the

surface, the net current in the z-direction must be zero at the top and bottom

surfaces of the film. This changes the waveguide to an effective resonant

(Fabry-Pérot) cavity of length h, introducing the restriction

kz = p π/h, (4.1)

where p is an integer.

Substituting this constrained value for the propagation constant into

Eq. 3.5a gives a set of discrete resonance frequencies,

ωmnp =
c√
εc

[(p π
h

)2

+ β2
mn

]1/2

. (4.2)
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Figure 4.2: A graphical interpretation of the resonance condition described
by Eq. 4.2. Vertical lines correspond to the kz restricted by film thickness
(Eq. 4.1), solid curves are the modal dispersion curves of the cylindrical
cavities (Eq. 3.5a). The intersections of the two curves (points for p = 1
line) correspond to resonance conditions. Here h/a = 2.1.

Fig. 4.2 shows a graphical interpretation of this method. The dispersion

curves are plotted, along with the restricted values for kz from Eq. 4.1 which

are vertical lines. The intersections between these curves correspond to res-

onance conditions for the effective cavity.

The frequency of light in the cavity, and the effective wavelength, λeff
mnp ≡

2πc/ωmnp, are then functions of film thickness. Fig. 4.3 shows the effective

wavelength in a cavity embedded in a PEC metal as a function of film thick-

ness for the p = 1 resonance. For small thicknesses relative to the aperture

radius, the permitted wavelength approaches zero, and the response of the
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Figure 4.3: The effective wavelength (solid) in the cavity embedded in PEC
is plotted (normalized with respect to cavity radius, a) as a function of film
thickness (normalized with respect to cavity radius, a) for the p = 1 reso-
nance. Dashed lines are the infinite-waveguide guided frequencies.

structure is dominated by the film thickness, with minor variation between

the radial modes. On the other hand, as the cavity length increases rela-

tive to the aperture radius, the significance of the radial contribution grows,

and the resonances approach the infinite-waveguide solutions (dashed lines).

This behavior is qualitatively the same for non-PEC metals, with the exact

functional form depending on the detailed dielectric properties of the metal.

4.2.2 A complete solution

The analysis in Section 4.2.1 ignores the contribution to the induced currents

at the top surface due to the incident fields. Additionally, this solution does
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Figure 4.4: A cross-sectional slice of unit cell of a cylindrical cavity embedded
in a PEC film is shown, with the magnitude of the electric field (in arbitrary
units) plotted. Here 2a/Λ = 0.88, h/a = 2.63 and the fields are evaluated at
ω/(cπ/h) = 1.72. The solid black line, oriented along the z-direction above
the film surface, is the predicted cavity field leakage depth.
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not depend on periodicity, an effect which can not be neglected. Furthermore,

a full field simulation (Fig. 4.4) shows that the fields of an ECR reach beyond

the surface of the film, above and below, extending the effective height of the

cavity. That is, if the concentrated fields extend a distance δe above and

below the metal surface, the aperture has an effective height

heff = h+ 2δe, (4.3)

which is the actual aperture height plus the total penetration depth into the

superstrate and substrate, beyond which the cavity fields decay to zero.

Then, we substitute this effective cavity height in Eq. 4.1, giving the

restriction

kz = p π/heff, (4.4)

where p is an integer. The distance the fields leak out of the cavity is deter-

mined by restrictions on the fields above and below the film, which depend

explicitly on the periodicity of the apertures.

To find this distance, we must find the maximal spatial extent of localized

fields in the superstrate. It has been pointed out that evanescent fields at the

interface between the apertures and the superstrate and substrate play an

important role in EOT, but the details of this mechanism is not completely

understood.[34, 63] Here, we develop an approach which more completely
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describes the role of the evanescent fields, by describing the spatial extent of

the cavity resonance in terms of the length added by the evanescent fields.

These localized fields, unlike incident plane waves, are able to couple to

waveguide modes in the cavity.

We note that, due to continuity boundary conditions between an aperture

and the superstrate, single-walled aperture structures are unable to support

the normally-incident TEM waves which strike them. Specifically, TEM

waves have no z-component to their fields, while the fields in the apertures

require a non-zero Ez (TM modes) or Hz (TE mode).[24] Likewise, light

exiting an aperture can not directly excite a zero-order transmission plane

wave. Nevertheless, as we discussed in Section 2.3, normally-incident light

scatters from periodic arrays of subwavelength holes into Floquet modes.

Evanescent Floquet modes, where (m2 + n2)K2 > εsω
2/c2, introduce

strong localized fields above and below the metal film. These fields decay

exponentially away from the surface with a decay length

δmn (ω,Λ) = 1/Im[kfzmn(ω,Λ)], (4.5)

where kfz is given by Eq. 2.13c. In general, these scattered fields have non-

zero z-components, which then interact with the fields inside the apertures.

Thus, it is the strength of, and scattered, although localized, nature of the
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evanescent modes that drives the transmission through the film.

The maximal spatial extent of these localized fields then sets the pene-

tration depth of the cavity fields into the superstrate and substrate. That

is,

δe(ω,Λ) = max [δmn (ω,Λ)] . (4.6)

The inclusion of the max function picks the mode with the longest decay

length which is, in general, the lowest-order non-propagating mode. Al-

though the detailed behavior of the electromagnetic fields above and below

the metal is due to a superposition of all evanescent and propagating Floquet

modes, the extent of the localized fields is still limited by the lowest-order

evanescent Floquet mode in the superstrate or substrate. This sets the max-

imal distance over which any evanescent Floquet modes can extend, and

thereby the effective depth of the fields above and below the film.

Furthermore, this length depends explicitly on the periodicity, which di-

rectly explains both the enhancement seen for periodic structures, and the

variation in EOT with changes of periodicity. We discuss this further in Sec-

tion 4.3. This predicted length is shown in Fig. 4.4 as the solid black line,

oriented along the vertical direction above the film surface, and is seen to

match the field simulation. Additionally, note the field strength at that point

matches the field strength at cavity walls, and thus describes the edge of the
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effective cavity.

There is one notable limitation of this approach, which we now discuss.

At a frequency where the radicand in Eq. 2.13c is zero, i.e. a diffraction

frequency,

ωdiff =
cπ

p
√
εs

√
m2 + n2, (4.7)

the field leakage depth asymptotically approaches infinity, with a disconti-

nuity at the diffraction frequency. This can be seen in Fig. 4.5, which shows

the leakage depth as a function of frequency. The tendency towards infinite

evanescent decay lengths captures the smooth transition from a localized

mode to a propagating diffracted mode. However, approaching this tran-

sition makes the lowest order evanescent fields less local, while the second

order (shorter decay length) evanescent fields are still localized. The actual

effective cavity addition δe must then depend on the relative weights of the

first- and second-order evanescent modes, which we do not analyze. Thus,

we expect this model to break down at frequencies just below the diffraction

frequencies. It is likely that this analysis can be improved by considering the

scattering efficiencies into different Floquet modes. However, even without

that addition, this model is still highly accurate for nearly all frequencies.

Using these results, we can rewrite Eq. 4.2 using the effective height of
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Figure 4.5: We plot the cavity field leakage length δe as a function of nor-
malized frequency. Discontinuities at dashed vertical lines are the locations
of the onset of propagating diffracted modes.

Eq. 4.3,

ωmnp =
c√
εc

[(
p π

h+ 2δe(ωmnp)

)2

+ β2
mn

]1/2

. (4.8)

Since the effective height is itself a function of frequency, it is difficult to find

an exact solution for ω in all cases. Nevertheless, due to the analytic nature

of this expression, we are still able to extract general trends in resonance

changes due to cavity geometry. For ease of interpretation, we utilize the

graphical approach discussed earlier. In Fig. 4.6 the dispersion curves are

plotted, along with the restricted kzs from Eq. 4.4 which are the dashed lines.

The intersections between these curves correspond to resonance conditions

for the effective cavity.
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Figure 4.6: A graphical interpretation of the resonance condition described
by Eq. 4.8. Dashed lines correspond to the kz restricted by film thickness
(Eq. 4.4), solid curves are the modal dispersion curves of the cylindrical
cavities (Eq. 3.5a). The intersections of the two curves (points for p = 1
line) correspond to resonance conditions. Here h/a = 2.1.

Until this point we have been analyzing open apertures in metal films.

We feel it is also worthwhile briefly noting that this approach can be applied

to closed cavities, as well, with a different effective height,

heff = h+ δe + δm, (4.9)

where δm is the field penetration depth into the metal (i.e. the skin depth

Eq. 3.1), and where we follow the key assumption in Chapter 3, neglecting

fields beyond a skin depth into metal. Then, Eq. 4.2 becomes:

ωmnp =
c√
εc

[(
p π

h+ δe(ωmnp) + δm(ωmnp)

)2

+ β2
mn

]1/2

. (4.10)
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4.3 ECR dependence on structure geometry

Figure 4.7 shows the dispersion curves, Eq. 3.5a, overlaid with the restricted

kz condition, Eq. 4.4, for different geometries. Note the discontinuity in the

kz restriction at diffraction frequencies due to the limitations of the theory

discussed earlier. The dependence of EOT peaks on cavity radius is found

in Eq. 3.5a; the radius only affects the waveguide mode dispersion. Thus,

keeping the film thickness and periodicity fixed, and changing the radius,

shifts only the modal dispersion curve up or down, see Fig. 4.7(a). As the

radius decreases, the allowed waveguide modes shift to higher frequencies,

as expected. However, the rate of shifting is not uniform, in contrast to the

illustrative model discussed in Section 4.2.1, and smaller shifts are found for

the same change in radius as the resonance approaches a diffraction frequency.

Also, note that the dielectric in the cavity enters these calculations by shifting

the dispersion curve towards lower frequencies with higher dielectrics.

Changing the period or film thickness leaves the waveguide modal disper-

sion curve untouched, shifting only the restriction on kz due to the effective

cavity height. The relative size of h and δe determine the dominant con-

tribution to the effective length. When h is large relative to δe, i.e. thick

films, the resonance approaches the simpler model discussed earlier, where
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the dominant length is in the waveguide. When δe is large, i.e. extremely thin

films or near diffraction, the effects of periodicity dominates the transmission

spectrum.

Increasing the thickness of the film pushes the kz restriction curve closer

to the straight vertical lines of Fig. 4.2. However, the lines never do reach

pπ/h as there is always some field coupling depth, see Fig. 4.7(c). The

smooth transition from the enhanced transmission of a periodic structure, to

propagation along regular, independent waveguides can be seen.

Increasing the period shifts the first diffraction towards lower frequencies,

drastically changing the curvature of this restriction curve, see Fig. 4.7(b).

This, in turn, shifts all resonances towards lower frequencies, with the most

drastic changes occurring close to diffraction frequencies. As the period in-

creases further, it pushes down the diffraction frequencies, and thereby in-

creases the density of restricted kz lines crossing the dispersion curves. It

should also be noted that expected transmission through a film drops above

a diffraction frequency. If the lowest order scattered Floquet mode is a prop-

agating mode, it not only carries energy away from the structure, but it also

leaves proportionally less electromagnetic energy to be scattered into the

lowest order evanescent mode, thus decreasing the available localized light

which can be coupled to the ECR. This effect introduces an important design
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restriction when designing compound cavity array structures. Namely, it is

important that all desired effects occur below the onset of diffraction; we dis-

cuss this further in Part III. Also, note that the dielectric in the superstrate

or substrate enters these calculations by increasing the effective height with

higher dielectric values.

This result further explains the differences in EOT between periodic and

single apertures. As the period approaches infinity (i.e. single apertures),

the discrete transverse Floquet wavevectors
√

(m2 + n2)K2 can be made ar-

bitrarily close together and can be considered a continuous variable which

varies smoothly between 0 and εsω
2/c2. This leads to an infinite continuum of

propagating reflected modes (i.e. a spherical scattered wave) and the number

of evanescently decaying modes approaches zero. However, it is precisely via

these evanescent fields that light is coupled into, and ultimately out of the

cavity. Thus, as the periodicity increases, the number of modes which permit

EOT approaches zero, leading to the expected weaker overall coupling and

lower transmission.

4.4 Comparison to simulation

It is straightforward to numerically find the roots to Eq. 4.8 and calculate

the dependence of peaks in EOT on geometrical properties over a large range
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(a) Effect of varying the radius. Arrow
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line is the kz restriction from film thick-
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ent waveguide modal dispersion curves.

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0

kz � HΠ � hL

Ω
�Hc

Π
�h

L

Increasing period

(b) Effect of varying the periodicity. Ar-
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are the diffraction frequencies for each pe-
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(c) Effect of varying the film thickness.
Arrow points along direction of increas-
ing thickness with h/a of 2.11, 2.63, 3.16,
and 6.32 plotted. Here 2a/Λ = 0.87, the
black line is the waveguide modal disper-
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Figure 4.7: Graphical interpretation of the variation in the resonance condi-
tion due to changes in radius (a), periodicity (b), and film thickness (c).
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of values. To verify the predictions, we simulated structures using HFSS,

which is a commercially available full-wave finite element simulation tool.

We simulate periodic cylindrical apertures embedded in idealized PEC metal

film as well as cavities in a realistic gold film.

Figure 4.8 compares the simulated transmission through a PEC film with

εc = εs = 1, overlayed with predicted peaks of EOT. There is extremely

strong agreement between the predicted and simulated results, over a wide

range of geometries. Any major differences between predicted and simulated

values occur at frequencies very close to diffraction frequencies, which is a

manifestation of the limitation of this theory discussed earlier. It is also

worth noting that for extremely thin films, the resonance broadens signifi-

cantly towards lower frequencies. This is due to the contribution of evanes-

cent waveguide modes (i.e. below cutoff) where the decay length along the

aperture is large compared to the film thickness, as discussed in Chapter 3.

Note, that the subwavelength condition 2a/λ < 1 is given in the normal-

ized coordinates of Fig. 4.8(a) by(
2a

Λ

)(
ω

cπ/h

)
< 2

(
h

Λ

)
. (4.11)

Similarly, in the normalized coordinates of Fig. 4.8(b) by(
ω

cπ/h

)
<

(
h

a

)
, (4.12)
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and in the normalized coordinates of Fig. 4.8(c) by

(
ω

cπ/Λ

)
< 2

(
2a

Λ

)−1

, (4.13)

Then, the plotted range of values in Fig. 4.8 are entirely within the subwave-

length regime. The existence of EOT through subwavelength PEC struc-

tures, where SP resonance is not a contributing factor, further highlights

the minimal role of SPs in aperture array EOT. The ECR can be viewed

as the dominant mechanism which enhances transmission for this class of

structures. While there are some structures which are well-described by a

SP model, this analysis demonstrates that a wide variety of structures do

not require SP resonances to create enhanced transmission.

As further verification of the validity of this approach, we compare the

predictions of this model as it applies to cavities in metal, as per Eq. 4.10.

Figure 4.9 compares the simulated specular reflection from a gold film with

εs = 2.1 and εc = 2.1 + i 0.9, overlayed with predicted peaks of EOT. We

introduced loss in the cavity dielectric to better identify the resonances; when

there are strong fields built up in the cavity there is increased loss in the

dielectric. There is reasonably close agreement between the predicted and

simulated results. The weakest agreement is found upon varying the radius.

Due to the fairly large skin depths of gold at optical frequencies, there is a
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(b) Effect of varying the periodicity. Here
h/a = 2.63.
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(c) Effect of varying the film thickness.
Here 2a/Λ = 0.87.

Figure 4.8: Simulated zero-order transmission through cylindrical apertures
embedded in PEC, overlayed with predicted ECR peaks. The gray dashed
lines are diffraction frequencies, and the black, blue and red (and green) col-
ored lines are the lowest order TE11p curves for p=1,2,3 (and 4) respectively
as a function of radius (a), periodicity (b) and film thickness (c).
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(a) Effect of varying the radius. Here h =
250 nm and Λ = 800 nm.
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(b) Effect of varying the periodicity. Here
h = 250 nm and a = 190 nm.
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(c) Effect of varying the film thickness.
Here a = 190 nm and Λ = 800 nm.

Figure 4.9: Simulated specular reflection from an array of cylindrical holes
embedded in gold, overlayed with predicted ECR peaks. The gray dashed
lines are diffraction frequencies, the black and blue lines are the lowest order
TE111 and TM011 curves, respectively as a function of radius (a), periodicity
(b) and film thickness (c).
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small range of values where a/δm is large, while 2a/Λ remains small. When

these conditions are not satisfied, a large fraction of the fields are contained

within the metal, and the ECR model and SDBC would not apply. Any other

differences between predicted and simulated values occur at frequencies very

close to diffraction frequencies, which is a manifestation of the limitations of

this theory discussed earlier in Section 4.2.2.

4.5 Calculating the quality factor of the ECR

Now that we are able to calculate the resonance frequencies of the effec-

tive cavities, it is possible to calculate the quality factor, Q, of the effective

resonance. Here we use the expression,

Q = ωmnp
U

Ploss

, (4.14)

where ωmnp is a particular resonance frequency found using Eq. 4.8, U is the

time-averaged energy stored within the aperture and Ploss is the time-average

power lost.[24] Putting together Eqs. 2.8, 2.10a, and 4.4, we have

ψmnp = e−i(pπ/heff)zeimϕJm (βmnr) , (4.15)

and we can calculate both the energy stored and power lost.

The energy stored in the aperture is

U low
mnp =

C

4π

[
ε
ω2
mnp

c2

1

β2
mn

]
h

4

∫∫
|ψmnp|2 rdr dϕ, (4.16a)
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where the integral is taken over the aperture face, and where C = 1 for

TE modes and C = ε for TM modes.[24] Note, that this only the energy

stored within the metallic bounds of the aperture (i.e. we use h for the cavity

height), and is thus is really a lower bound for the energy stored. However,

as there is some energy stored in the evanescent fields above and below the

aperture, an upper bound for the stored energy includes these fields (i.e. we

use heff for the cavity height):

Uhigh
mnp =

C

4π

[
ε
ω2
mnp

c2

1

β2
mn

]
heff

4

∫∫
|ψmnp|2 rdr dϕ. (4.16b)

Using these two values yields an upper and lower bound for the quality factor.

The power lost from the aperture is due to two sources: transmission out

of the bottom face of the aperture and losses at the metal walls, the latter

of which only exists with non-PEC metals. We do not consider the loss from

the upper face of the aperture. The reason for this is apparent from the

PEC case where we find 100% transmission through the film at resonance.

This means that an equal amount of power flows through the top face of

the apertures as through the bottom, with the same directionality. Since the

unit normal vectors pointing out of the cavity are equal in magnitude but

opposite in direction at the top an bottom faces, the total power flow out

of the cavity is zero. This would correspond to an infinite Q, which must
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be rejected outright. Thus, we assume that, at resonance, whatever power

enters the aperture at the top face must exit from the bottom or be absorbed

in the walls. It is worthwhile noting, however, that this argument does not

assume that for all circumstances 100% of incident light couples into the

cavity, just that any light that is coupled is either transmitted or absorbed.

This result allows us to greatly simplify the calculation for Ploss, as we

need not directly solve for the flow of power into the metal walls. Given

that all energy which enters the apertures from the top surface must either

be absorbed in the metal or transmitted out of the aperture, the power lost

must be equal to the power incident, P , and it is sufficient to set Ploss = P .

The incident power is,

Pmnp =
C

4π

c

2
√
ε

[
ε
ω2
mnp

c2

1

β2
mn

]

×

√
1−

[
ε
ω2
mnp

c2

1

β2
mn

]−1 ∫∫
|ψmnp|2 rdr dϕ (4.17)

which is also the power lost.[24]

Substituting Eqs. 4.16 and 4.17 into Eq. 4.14 gives an expression for the

bounds of Q for a particular resonance,

Qlow
mnp =

hheff

2

ε

pπ

ω2
mnp

c2
(4.18)
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and

Qhigh
mnp =

h2
eff

2

ε

pπ

ω2
mnp

c2
. (4.19)

Note that Q is proportional to the resonance frequency squared. Thus, for

an otherwise identical structure, transitioning from a PEC to a real metal

decreases the resonance frequency, and thus decreases the Q which implicitly

captures the metallic losses. This, furthermore, captures the dependence of

the quality factor on the various geometrical parameters.

We can use this result to predict the bandwidth and resonance line shape

for each resonance. We assume that the transmission line shape matches the

line shape of energy in a cavity,[24]

|E(ω)|2 ∝ 1

(ω − ωmnp)2 + (ωmnp/2Qmnp)2
. (4.20)

Figure 4.10 shows simulated transmission through a particular geometrical

configuration with the calculated Q, normalized and superimposed over the

transmission curve. There is very strong agreement between the predicted

response and the simulated transmission; the slightly wider simulated trans-

mission peaks are due to the fact that the complete transmission spectrum

is given by a superposition of the two resonances.
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Figure 4.10: The transmission curve (solid black) for an aperture in PEC,
with 2a/Λ = 0.87, and h/Λ = 1.15. The red and blue dashed curves are the
normalized resonant line shape for the TE111 and TE112 resonances for both
the upper (lighter) and lower (darker) bounds of Q.

4.6 Summary and conclusion

We have presented a new analytical theory for the mechanism of enhanced

optical transmission through arrays of subwavelength apertures. This theory

demonstrates that an effective cavity is described by the cavity dimensions

in conjunction with the decay length of strong, localized evanescent Floquet

modes in the regions above and below the metal film. These localized fields

are the primary cause for coupling light between the apertures and the other

regions. Thus, this model is a fundamental theory for a mechanism of non-

surface plasmon EOT.
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Furthermore, we have shown how to predict the frequencies where peaks

in enhanced transmission occur and how these frequencies depend on the

cavity dimensions, metal choice, as well as periodicity of the structure. This

model is valid over an extremely broad range of geometries, limited only at

frequencies close to diffraction. We have shown strong agreement between

our theory and simulations for both apertures through PEC and cavities

embedded in real gold.

Although the model was applied to cylindrical apertures, this approach

can be generalized to apertures of arbitrary shape. Other apertures change

the value of the transverse wavevector β in dispersion relation of Eq. 3.5a,

leaving everything else unchanged. Similarly, this can be generalized to rect-

angular (Eq. 3.5b), and perhaps arbitrary, periods, changing only the recipro-

cal lattice vectors in Eqs. 2.13. Likewise, the dependence of EOT on incident

angle can be deduced from the changes this makes to the propagation vectors

in the superstrate.
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Chapter 5

Rigorous coupled wave analysis

5.1 Introduction

The rigorous coupled wave analysis has been known in one form or another for

quite some time.[64] Variations on this semi-analytic approach have been de-

veloped and used extensively for modeling grating and aperture array meta-

materials.[46, 54, 55, 65] In this approach, the incident and unknown fields

are written in different regions as linear combinations of orthogonal basis

functions. Application of appropriate electromagnetic boundary conditions

over all of the shared interfaces relates the fields in various regions.

Many approaches expand the fields in all regions only in terms of the

Floquet mode solutions.[64,66–69] In our approach, we will expand the elec-

tric and magnetic fields in terms of different sets of basis functions in the

different regions.[46, 70] This approach requires fewer terms in the expan-

82
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sion to converge to a physical result than the former approach. However,

it requires calculating the overlap integrals between different sets of basis

functions, which often must be computed numerically.

Our approach to the RCWA is not fundamentally different than existing

approaches. One significant difference, however, is in the choice of metal

boundary conditions. We make use a surface impedance boundary condition

(SIBC),[24,71–73] as well as the SDBC, see Chapter 3. This approach allows

a simpler expansion of the fields inside the cavity than some other approaches.

5.2 Solution strategy

Our approach to the RCWA relies on our knowledge of the field’s behavior

in various regions; we will therefore expand both the electric and magnetic

fields in terms of sets of basis functions appropriate for each region. Namely,

in the superstrate, where we expect the overall far-field to behave largely like

plane waves, we expand the fields – both incident and scattered – in terms

of basis sets of Floquet modes (Eq. 2.15). In the cavities, however, it is more

natural to expand the fields in terms of waveguide modes (Eq. 2.8).

Here, we will apply the SDBC at the metal surfaces inside the aperture

or cavity. At the top and bottom metal surfaces, facing the superstrate, we
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apply the SIBC

Et = Zn̂×Ht, (5.1)

where Z = 1/n is the impedance of the metal, where n is the, in general

complex, index of refraction of the metal, Et and Ht are the electric and

magnetic fields tangent to the interface and n̂ is the unit normal out of the

metal (ẑ on the top interface, −ẑ on the bottom).

Additionally, we require continuity of the transverse electric fields and

magnetic fields – subject to the continuity condition Eq. 3.22 where J = 0 –

across any cavity-superstrate or aperture-substrate interface. Then multiply-

ing the resulting relationships by orthogonal basis functions and integrating

over the interfaces will eventually yield a set of equations for the unknown

field expansion coefficients in terms of the incident conditions.

5.2.1 Polarization schemes

It useful to decompose an arbitrary electromagnetic field into two orthogonal

polarizations. Waveguide fields are usually broken down into TM (Hz = 0)

and TE (Ez = 0) polarizations. In general, TEM (Hz = 0 and Ez = 0)

cavity polarizations can also exist, but for cavities of a single surface these

modes are non-existent. For coaxial and grating-type structures, on the other

hand, TEM modes must be included. These cavity polarizations are linearly
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independent; transverse fields for each polarization are uniquely specified

by the z-components of the field, see Eq. 2.7. Therefore, any arbitrary field

within the cavities with both Ez and Hz components can be split into TM and

TE parts, and once Ez and Hz are known, the remaining field components

for each polarization can be calculated separately and independently of the

other.

We will likewise separate the fields in the superstrate into these two po-

larizations. Then, an incident plane wave with TM polarization in the su-

perstrate, for example, has a Ez component while Hz = 0. Continuity of the

E and H fields across the cavity interface ensures that the only cavity modes

that can directly couple with this incident TM plane wave are ones with

Hz = 0, namely cavity TM modes. Then, the TE cavity modes, likewise,

will only directly interact with an incident plane wave with TE polarizations

where Ez = 0.

However, scattered fields produced by this TM incident wave can, in

general, have Hz components. But, in order to satisfy the condition that the

net Hz = 0, for a given scattered field with Hz 6= 0, there must be other

fields with equal and opposite Hz components. This leaves us, though, with

the existence of scattered or diffracted fields of both polarizations for an

incident beam having a single polarization, and thus an incident TM wave
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can, indirectly, couple to TE cavity modes through scattered fields.

As an illustrative example, we’ll consider a normally-incident plane wave.

This beam has a TEM polarization; both E and H must be perpendicular to

the incident kf0 = kẑ vector, thus there is neither an Hz nor an Ez component

to the fields. This implies is that the incident beam can not directly couple to

any cavity modes. However, scattered fields can have both Hz and Ez, and

even a TEM beam can couple to both TM and TE polarizations. Thus, it

is through scattering that coupling between TE and TM modes arises, even

for non-normal incident waves. In practice, as discussed in Chapter 4, it is

the evanescent scattered fields that are the dominant contributors to cavity

excitations.

5.2.2 Floquet modes in Cartesian coordinates

For the purposes of this chapter, in the interest of readability, we will drop

the explicit superscript f notation on Floquet mode wave vectors, unless

there is a particular need. We also assume a rectangular lattice, such that

Eqs. 2.13 become:

kxm = k0 sinϕi cos θi +
2mπ

Λx

, (5.2a)

kyn = k0 sinϕi sin θi +
2nπ

Λy

, (5.2b)
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and

kzmn =
√
εκ2

0 − k2
xm − k2

yn, (5.2c)

where ϕi is the inclination and θi is the azimuthal angle of the incoming

wavevector. Additionally, we can write inclination and azimuthal angles of

scattered waves (when ϕ 6= 0, m 6= 0, and n 6= 0) as

sin θmn =
kyn√

k2
xm + k2

yn

, (5.3a)

cos θmn =
kxm√

k2
xm + k2

yn

, (5.3b)

sinϕmn =

√
k2
xm + k2

yn√
εκ0

=
√

1− ξ2
mn, (5.3c)

cosϕmn =
kzmn√
εκ0

= ξmn, (5.3d)

see Fig. 5.1(a).

Now, for the TM polarization, we write all the fields in terms of the

magnitude of the magnetic field, HTM
mn , see Fig. 5.1(b). Here we relate the

magnitude of the electric field ETM
mn to the magnetic field using Eq. 2.3d.
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(a) An arbitrary wave vector.

E

H

x

y

Θmn

Θmn

kmn
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(b) The wave vectors in TM polarization.

E

x

y

Θmn

Θmn

kmn
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kynH

(c) The wave vectors in TE polarization.

Figure 5.1: Geometry of the Floquet mode wave vectors.
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Hence,

ETM
zmn = ±HTM

mn

1√
ε

sinϕmn, (5.4a)

ETM
xmn = ∓HTM

mn

1√
ε

cos θmn cosϕmn, (5.4b)

ETM
ymn = ∓HTM

mn

1√
ε

sin θmn cosϕmn, (5.4c)

HTM
zmn = 0, (5.4d)

HTM
xmn = +HTM

mn sin θmn, (5.4e)

HTM
ymn = −HTM

mn cos θmn. (5.4f)

(5.4g)

Regarding the choice of sign in the latter three equations, the upper symbol

refers to upward propagating and the lower symbol to downward propagating

waves. We continue this notation for the remainder of this chapter. Similarly,

for the TE polarization, we write all the fields in terms of the magnitude of

the electric field, ETM
mn , see Fig. 5.1(c). Here we relate the magnitude of the
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electric field ETM
mn to the magnetic field using Eq. 2.3c. Hence,

ETE
zmn = 0, (5.5a)

ETE
xmn = ETE

mn sin θmn, (5.5b)

ETE
ymn = −ETE

mn cos θmn, (5.5c)

HTE
xmn = ±ETE

mn

√
ε cos θmn cosϕmn, (5.5d)

HTE
ymn = ±ETE

mn

√
ε sin θmn cosϕmn, (5.5e)

HTE
zmn = ∓ETE

mn

√
ε sinϕmn. (5.5f)

For normally incident or reflected, TEM waves, we retain two independent

polarizations, expanded in terms of HTM
mn or ETE

mn , which we still refer to as

TM and TE, even though the z-components of both fields are zero.

5.3 Field expansions

With all this, we are now able to expand the fields in the superstrate, sub-

strate, and cavity in terms of appropriate basis sets. Here we assume the

cavities or apertures are of height h, centered around z = 0, see Fig. 5.2

5.3.1 Fields in the superstrate and substrate

We can now expand both the electric and magnetic fields in the superstrate,

and in substrate for open channels, as the sum of the TM and TE Floquet
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Figure 5.2: A schematic of a geometry that is described in this analysis.

modes. As a notation convention, in the expressions for incident waves,

which in our geometry are downward propagating, we will replace the HTM
mn

expansion coefficients with ITMmn and the ETE
mn expansion coefficients with ITEmn .

We assume that the superstrate, defined by the region z > h/2 above the

metal film, is filled with a dielectric εa, so here,

kzmn =
√
εaκ2

0 − k2
xm − k2

yn

= ξmn
√
εaκ0,

(5.6)

where

ξmn ≡

√
1−

k2
xm + k2

yn

εaκ2
0

. (5.7)

Then the six electric and magnetic field components can be written,

Esuper
z =

∑
m,n

(
− 1√

εa

√
1− ξ2

mnI
TM
mn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
1√
εa

√
1− ξ2

mnH
TM
mn

)
ei[kxmx+kyny+kzmn(z−h/2)], (5.8a)
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Esuper
x =

∑
m,n

(
− 1√

εa
ξmn cos θmnI

TM
mn + sin θmnI

TE
mn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
1√
εa
ξmn cos θmnH

TM
mn + sin θmnE

TE
mn

)
ei[kxmx+kyny+kzmn(z−h/2)],

(5.8b)

Esuper
y =

∑
m,n

(
− 1√

εa
ξmn sin θmnI

TM
mn − cos θmnI

TE
mn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
1√
εa
ξmn sin θmnH

TM
mn − cos θmnE

TE
mn

)
ei[kxmx+kyny+kzmn(z−h/2)],

(5.8c)

Hsuper
z =

∑
m,n

(√
εa
√

1− ξ2
mnI

TE
mn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
−
√
εa
√

1− ξ2
mnE

TE
mn

)
ei[kxmx+kyny+kzmn(z−h/2)], (5.8d)

Hsuper
x =

∑
m,n

(
sin θmnI

TM
mn −

√
εa ξmn cos θmnI

TE
mn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
sin θmnH

TM
mn +

√
εa ξmn cos θmnE

TE
mn

)
ei[kxmx+kyny+kzmn(z−h/2)], (5.8e)

Hsuper
y =

∑
m,n

(
− cos θmnI

TM
mn −

√
εa ξmn sin θmnI

TE
mn

)
ei[kxmx+kyny−kzmn(z−h/2)]

+
∑
m,n

(
− cos θmnH

TM
mn +

√
εa ξmn sin θmnE

TE
mn

)
ei[kxmx+kyny+kzmn(z−h/2)].

(5.8f)

Similarly, we assume that the substrate (if non-metallic), defined by the

region z < h/2 below the metal film, is filled with a dielectric εb. Thus,

k̃zmn =
√
εbκ2

0 − k2
xm − k2

yn (5.9)

= ξ̃mn
√
εbκ0, (5.10)
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where

ξ̃mn ≡

√
1−

k2
xm + k2

yn

εbκ2
0

. (5.11)

Then the six electric and magnetic field components can be written,

Ẽsub
z =

∑
m,n

(
− 1√

εb

√
1− ξ̃2

mnH̃
TM
mn

)
ei[kxmx+kyny−k̃zmn(z+h/2)], (5.12a)

Ẽsub
x =

∑
m,n

(
− 1√

εb
ξ̃mn cos θmnH̃

TM
mn + sin θmnẼ

TE
mn

)
ei[kxmx+kyny−k̃zmn(z+h/2)],

(5.12b)

Ẽsub
y =

∑
m,n

(
− 1√

εb
ξ̃mn sin θmnH̃

TM
mn − cos θmnẼ

TE
mn

)
ei[kxmx+kyny−k̃zmn(z+h/2)],

(5.12c)

H̃sub
z =

∑
m,n

(√
εb

√
1− ξ̃2

mnẼ
TE
mn

)
ei[kxmx+kyny−k̃zmn(z+h/2)], (5.12d)

H̃sub
x =

∑
m,n

(
sin θmnH̃

TM
mn −

√
εb ξ̃mn cos θmnẼ

TE
mn

)
ei[kxmx+kyny−k̃zmn(z+h/2)],

(5.12e)

H̃sub
y =

∑
m,n

(
− cos θmnH̃

TM
mn −

√
εb ξ̃mn sin θmnẼ

TE
mn

)
ei[kxmx+kyny−k̃zmn(z+h/2)].

(5.12f)

Note that the substrate fields, expansion coefficients, and wave vectors are all

noted by a tilde. Additionally, the substrate fields lack any incident (upward

traveling) waves, as we assume light is only incident from the top surface.

5.3.2 Fields in the cavities or apertures

For the fields in the cavities or apertures, we expand as the sum of the TM

and TE solutions to Eq. 2.8. For a single-surface cavity, there are no TEM
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modes. To distinguish between the propagation constants kzmn and k̃zmn

in the superstrate and substrate, we use γ as the propagation constant in

the waveguide, and use indices s and l rather than m and n. Additionally,

we will expand the fields generally in terms of the ψsl, without specifying if

the cavity is rectangular or cylindrical; these results apply equally well to

either case. We also assume the cavity is filled with a dielectric εc. Using

the results of Section 2.2, and some vector calculus identities, the six electric

and magnetic field components inside the cavity can we written,

Ecavity
z =

∑
s,l

ψTM
sl

[
eiγsl(z+h/2)Asl + e−iγsl(z+h/2)Bsl

]
, (5.13a)

Ecavity
x =

∑
s,l

iγsl
εcκ2

0 − γ2
sl

x̂ · ∇tψ
TM
sl

[
eiγsl(z+h/2)Asl − e−iγsl(z+h/2)Bsl

]
+
∑
s,l

iκ0

εcκ2
0 − γ2

sl

ŷ · ∇tψ
TE
sl

[
eiγsl(z+h/2)Dsl + e−iγsl(z+h/2)Fsl

]
, (5.13b)

Ecavity
y =

∑
s,l

iγsl
εcκ2

0 − γ2
sl

ŷ · ∇tψ
TM
sl

[
eiγsl(z+h/2)Asl − e−iγsl(z+h/2)Bsl

]
+
∑
s,l

− iκ0

εcκ2
0 − γ2

sl

x̂ · ∇tψ
TE
sl

[
eiγsl(z+h/2)Dsl + e−iγsl(z+h/2)Fsl

]
, (5.13c)

Hcavity
z =

∑
s,l

ψTE
sl

[
eiγsl(z+h/2)Dsl + e−iγsl(z+h/2)Fsl

]
, (5.13d)

Hcavity
x =

∑
s,l

− iεcκ0

εcκ2
0 − γ2

sl

ŷ · ∇tψ
TM
sl

[
eiγsl(z+h/2)Asl + e−iγsl(z+h/2)Bsl

]
+
∑
s,l

iγsl
εcκ2

0 − γ2
sl

x̂ · ∇tψ
TE
sl

[
eiγsl(z+h/2)Dsl − e−iγsl(z+h/2)Fsl

]
, (5.13e)
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Hcavity
y =

∑
s,l

iεcκ0

εcκ2
0 − γ2

sl

x̂ · ∇tψ
TM
sl

[
eiγsl(z+h/2)Asl + e−iγsl(z+h/2)Bsl

]
+
∑
s,l

iγsl
εcκ2

0 − γ2
sl

ŷ · ∇tψ
TE
sl

[
eiγsl(z+h/2)Dsl − e−iγsl(z+h/2)Fsl

]
, (5.13f)

where we have expanded in terms of the upward and downward propagating

TM mode expansion constants Asl and Bsl and the upward and downward

propagating TE mode expansion constants Dsl and Fsl. For rectangular

waveguide modes Eq. 2.10b, these expressions are simple; for cylindrical

modes Eq. 2.10a these expressions are more complicated. In all cases, we

assume solutions to these equations satisfying the SDBC at the cavity walls

for determination of γsl and related constants.

5.4 Application of boundary conditions

We are now able to relate the fields in the superstrate, cavity or aperture,

and substrate. We define the region rt ∈ C as the cross-sectional face of the

cavity or aperture and rt ∈ P as the face of the entire period. Note that we

have six sets of unknowns (HTM
mn , ETE

mn , Asl, Bsl, Dsl, and Fsl) for cavities, and

another two (H̃TM
mn and ẼTE

mn) for an open aperture. We must therefore have

six sets of equations relating these components (eight for apertures). The

continuity of both of the transverse components of the electric and magnetic

fields at the top interface gives us four sets. The remaining two (four) are
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found by application of the SDBC (continuity of both of transverse field

components) at the bottom of the cavity (aperture).

5.4.1 The top boundary

Ensuring the continuity of the transverse electric field at the top interface,

we equate Eqs. 5.8b and 5.13b evaluated at z = h/2, multiply by
(
ψTM
qr

)∗
,

integrate over the cavity face, and rearrange to give the unknowns in terms

of the known quantities. This gives

∑
m,n

K(1)

( q mr n )

(
− 1√

εa
ξmn cos θmnH

TM
mn − sin θmnE

TE
mn

)
+
∑
s,l

G(1)

( q sr l )

iγsl
εcκ2

0 − γ2
sl

[
eiγslhAsl − e−iγslhBsl

]
+
∑
s,l

G(2)

( q sr l )

iκ0

εcκ2
0 − γ2

sl

[
eiγslhDsl + e−iγslhFsl

]
=
∑
m,n

K(1)

( q mr n )

(
− 1√

εa
ξmn cos θmnI

TM
mn + sin θmnI

TE
mn

)
, (5.14)

where K and G represent the integrals,

K(1)

( q mr n )
≡
∫∫

rt∈C
ei[kxmx+kyny]

(
ψTM
qr

)∗
, (5.15a)

K(2)

( q mr n )
≡
∫∫

rt∈C
ei[kxmx+kyny]

(
ψTE
qr

)∗
, (5.15b)

(5.15c)
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and

G(1)

( q sr l )
≡
∫∫

rt∈C

(
x̂ · ∇tψ

TM
sl

) (
ψTM
qr

)∗
, (5.16a)

G(2)

( q sr l )
≡
∫∫

rt∈C

(
ŷ · ∇tψ

TE
sl

) (
ψTM
qr

)∗
, (5.16b)

G(3)

( q sr l )
≡
∫∫

rt∈C

(
ŷ · ∇tψ

TM
sl

) (
ψTE
qr

)∗
, (5.16c)

G(4)

( q sr l )
≡
∫∫

rt∈C

(
x̂ · ∇tψ

TE
sl

) (
ψTE
qr

)∗
. (5.16d)

For rectangular geometries, these integrals have analytic solutions; for cylin-

drical geometries they must be computed numerically. For multiple cavities

in a single unit cell, we repeat this analysis for each of cavities and its ex-

pansion coefficients.

We repeat this procedure for Eqs. 5.8c and 5.13c, now multiplying by(
ψTE
qr

)∗
. This gives,

∑
m,n

−K(2)

( q mr n )

(
1√
εa
ξmn sin θmnH

TM
mn − cos θmnE

TE
mn

)
+
∑
s,l

G(3)

( q sr l )

iγsl
εcκ2

0 − γ2
sl

[
eiγslhAsl − e−iγslhBsl

]
+
∑
s,l

−G(4)

( q sr l )

iκ0

εcκ2
0 − γ2

sl

[
eiγslhDsl + e−iγslhFsl

]
=
∑
m,n

K(2)

( q mr n )

(
− 1√

εa
ξmn sin θmnI

TM
mn − cos θmnI

TE
mn

)
. (5.17)

We now equate the transverse magnetic field components. We do this

in a piecewise fashion, equating Eqs. 5.8e and 5.13e over the cavity, and
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use the SIBC to relate Hx = 1/ZEy over the metal, where Ey is given by

Eq. 5.8c. These functions are evaluated at z = h/2, and we then multiply by

exp [−i(kxgx+ kyfy)], integrate over the entire period, and rearrange to give

the unknowns in terms of the known quantities. This gives

∑
m,n

−
(
δ

(1)( g m
f n

) − δ(2)( g m
f n

) 1

Z
1√
εa
ξmn

)
sin θmnH

TM
mn

∑
m,n

−
(
δ

(1)( g m
f n

)√εa ξmn + δ
(2)( g m
f n

) 1

Z

)
cos θmnE

TE
mn

+
∑
s,l

−L(1)

( q mr n )
iεcκ0

εcκ2
0 − γ2

sl

[
eiγslhAsl + e−iγslhBsl

]
+
∑
s,l

L(2)

( q mr n )
iγsl

εcκ2
0 − γ2

sl

[
eiγslhDsl − e−iγslhFsl

]
=
∑
m,n

(
δ

(1)( g m
f n

) + δ
(2)( g m
f n

) 1

Z
1√
εa
ξmn

)
sin θmnI

TM
mn

∑
m,n

−
(
δ

(1)( g m
f n

)√εa ξmn − δ(2)( g m
f n

) 1

Z

)
cos θmnI

TE
mn , (5.18)

where L and δ represent the integrals,

L(1)

( q mr n )
≡
∫∫

rt∈C

(
ŷ · ∇tψ

TM
sl

)
e−i[kxgx+kyfy], (5.19a)

L(2)

( q mr n )
≡
∫∫

rt∈C

(
x̂ · ∇tψ

TE
sl

)
e−i[kxgx+kyfy], (5.19b)

L(3)

( q mr n )
≡
∫∫

rt∈C

(
x̂ · ∇tψ

TM
sl

)
e−i[kxgx+kyfy], (5.19c)

L(4)

( q mr n )
≡
∫∫

rt∈C

(
ŷ · ∇tψ

TE
sl

)
e−i[kxgx+kyfy], (5.19d)



CHAPTER 5. RIGOROUS COUPLED WAVE ANALYSIS 99

and

δ
(1)( g m
f n

) ≡ ΛxΛyδmgδnf , (5.20a)

δ
(2)( g m
f n

) ≡
∫∫

rt /∈C
ei[kxmx+kyny]e−i[kxgx+kyfy], (5.20b)

(5.20c)

where δmn is the Kronecker delta function. Here as well, for rectangular

geometries these integrals have analytic solutions; for cylindrical geometries

they must be computed numerically. For multiple cavities in a single unit

cell, the integral δ(2) over the region rt /∈ C is transformed to the region not

containing any cavity, and the integrals L over the cavity must be computed

over each cavity face.

Finally, we repeat this procedure for the y-component of the magnetic

field, equating Eqs. 5.8f and 5.13f over the cavity, and using Hy = −1/ZEx



CHAPTER 5. RIGOROUS COUPLED WAVE ANALYSIS 100

over the metal, where Ex is given by Eq. 5.8c. This gives,

∑
m,n

(
δ

(1)( g m
f n

) − δ(2)( g m
f n

) 1

Z
1√
εa
ξmn

)
cos θmnH

TM
mn

+
∑
m,n

−
(
δ

(1)( g m
f n

)√εa ξmn + δ
(2)( g m
f n

) 1

Z

)
sin θmnE

TE
mn

+
∑
s,l

L(3)

( q mr n )
iεcκ0

εcκ2
0 − γ2

sl

[
eiγslhAsl + e−iγslhBsl

]
+
∑
s,l

L(4)

( q mr n )
iγsl

εcκ2
0 − γ2

sl

[
eiγslhDsl − e−iγslhFsl

]
=
∑
m,n

−
(
δ

(1)( g m
f n

) + δ
(2)( g m
f n

) 1

Z
1√
εa
ξmn

)
cos θmnI

TM
mn

∑
m,n

−
(
δ

(1)( g m
f n

)√εa ξmn − δ(2)( g m
f n

) 1

Z

)
sin θmnI

TE
mn . (5.21)

5.4.2 The bottom boundary

At the bottom boundary we have two choices of boundary conditions, de-

pending on the situation. If the cavities are closed, i.e. there is metal at the

bottom, we apply the SDBC. When the apertures are open to the substrate,

we repeat the procedure of field continuity from the top surface.

Cavities

As discussed at length in Chapter 3, the SDBC assumes that once the fields

have reached a skin depth into the metal, they resemble PEC fields. Due to

the relationships between the transverse fields and the normal fields within a
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cavity (Eqs. 2.7), it is sufficient to ensure that the normal fields drop to zero

upon reaching a skin depth. Applying this condition to Eq. 5.13a evaluated

at z = −h/2, multiplying by
(
ψTM
qr

)∗
, integrating over the area of the cavity

gives:

Asl + Bsl = 0, (5.22)

due to the orthogonality of the waveguide modes. Similarly, applying this

condition to Eq. 5.13d evaluated at z = −h/2, multiplying by
(
ψTE
qr

)∗
, inte-

grating over the area of the cavity gives:

Dsl + Fsl = 0, (5.23)

These are the remaining two sets of equations required to solve the system.

Apertures

For open apertures, we again match all four transverse electric and magnetic

field components. Ensuring the continuity of the transverse electric field at

the bottom interface, we equate Eqs. 5.12b and 5.13b evaluated at z = −h/2,

multiply by
(
ψTM
qr

)∗
, integrate over the cavity face, and rearrange to give the

unknowns in terms of the known quantities. This gives,

∑
s,l

G(1)

( q sr l )

iγsl
εcκ2

0 − γ2
sl

[Asl − Bsl] +
∑
s,l

G(2)

( q sr l )

iκ0

εcκ2
0 − γ2

sl

[Dsl + Fsl]

+
∑
m,n

K(1)

( q mr n )

(
1√
εb
ξ̃mn cos θmnH̃

TM
mn − sin θmnẼ

TE
mn

)
= 0. (5.24)
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We repeat this procedure for Eqs. 5.12c and 5.13c, now multiplying by(
ψTE
qr

)∗
. This gives,

∑
s,l

G(3)

( q sr l )

iγsl
εcκ2

0 − γ2
sl

[Asl − Bsl] +
∑
s,l

−G(4)

( q sr l )

iκ0

εcκ2
0 − γ2

sl

[Dsl + Fsl]

+
∑
m,n

K(2)

( q mr n )

(
1√
εb
ξ̃mn sin θmnH̃

TM
mn + cos θmnẼ

TE
mn

)
= 0. (5.25)

Here, again, for multiple cavities in a single unit cell, we repeat this analysis

for each of cavities and its expansion coefficients.

We now equate the transverse magnetic field components. Here again we

use the piecewise approach, equating Eqs. 5.12e and 5.13e over the aperture,

and Hx = −1/ZEy over the metal, where Ey is given by Eq. 5.12f. Note that

here, n̂ = −ẑ in the SIBC. These functions are evaluated at z = −h/2, and

we then multiply by exp [−i(kxgx+ kyfy)], integrate over the entire period,

and rearrange to give the unknowns in terms of the known quantities. This

gives

∑
s,l

−L(1)

( q mr n )
iεcκ0

εcκ2
0 − γ2

sl

[Asl + Bsl] +
∑
s,l

L(2)

( q mr n )
iγsl

εcκ2
0 − γ2

sl

[Dsl −Fsl]

+
∑
m,n

−
(
δ

(1)( g m
f n

) − δ(2)( g m
f n

) 1

Z
1√
εb
ξ̃mn

)
sin θmnH̃

TM
mn

+
∑
m,n

(
δ

(1)( g m
f n

)√εb ξ̃mn + δ
(2)( g m
f n

) 1

Z

)
cos θmnẼ

TE
mn = 0. (5.26)

Finally, we repeat this procedure for the y-component of the magnetic field,

equating Eqs. 5.12f and 5.13f over the aperture, and using Hy = 1/ZEx over
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the metal, where Ey is given by Eq. 5.12c. This gives,

∑
s,l

L(3)

( q mr n )
iεcκ0

εcκ2
0 − γ2

sl

[Asl + Bsl] +
∑
s,l

L(4)

( q mr n )
iγsl

εcκ2
0 − γ2

sl

[Dsl −Fsl]

+
∑
m,n

(
δ

(1)( g m
f n

) − δ(2)( g m
f n

) 1

Z
1√
εb
ξ̃mn

)
cos θmnH̃

TM
mn

+
∑
m,n

(
δ

(1)( g m
f n

)√εb ξ̃mn + δ
(2)( g m
f n

) 1

Z

)
sin θmnẼ

TE
mn = 0. (5.27)

These are the remaining sets of equations required to solve the system.

5.5 Constructing a coupling matrix

At this point, we would like to construct a coupling matrix to relate the

unknown quantities with the known. We are looking for a matrix-vector

equation of the form:

MΨ = Θ (5.28)

However, looking at all the coupling equations, we see that our known (and

unknown) quantities are rank 2 tensors (matrices). In order to get an equa-

tion like Eq. 5.28, we change indices.

For the Floquet mode, both m and n run from −N to N , for a total of

(2N + 1)2 modes. Note, that N can be different values for the superstrate

(Na) and substrate (Nb). We choose a new index m̃ which runs from 1 to

(2N + 1)2, cycling over each n for every m, see Table 5.1(a). Thus, m̃ goes
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m̃ m n

1 −N −N
2 −N −N + 1
...

...
...

2N + 1 −N N
(2N + 1) + 1 −N + 1 −N

...
...

...
(2N + 1)2 N N

(a) Change of index re-mapping for m and n.

s̃ s l

1 1 1
2 1 2
...

...
...

S 1 S
S + 1 2 1

...
...

...
S2 S S

(b) Change of index re-mapping
for s and l.

Table 5.1: Change of summation index re-mapping to convert double sums
to a matrix-vector equation.

from 1 to (2N + 1)2. We similarly define g̃ for the indices g and h which run

from −G to G.

For the cavity modes, both s and l run from 1 to S, for a total of S2

modes. We choose a new index s̃ which runs from 1 to S2, cycling over ever

l for each s, see Table 5.1(b). We similarly define q̃ for the indices q and r

which run from 1 to Q2.

Then, unknown quantities like Asl become vectors and other single-index

quantities, like ξmn, become diagonal matrices. Similarly, expressions like

F( q mr n ) become matrices F(q̃m̃) = Fq̃m̃. Now, we can drop all the explicit

summation signs over m̃ and s̃ (Einstein notation), and re-write Eqs. 5.14,
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5.17, 5.18, and 5.21 as,

−K(1)
q̃m̃

1√
εa
ξm̃ cos θm̃HTM

m̃ −K(1)
q̃m̃ sin θm̃ETE

m̃

+ G(1)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

eiγs̃hAs̃ − G(1)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

e−iγs̃hBs̃

+ G(2)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

eiγs̃hDs̃ + G(2)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

e−iγs̃hFs̃

= −K(1)
q̃m̃

1√
εa
ξm̃ cos θm̃ITMm̃ +K(1)

q̃m̃ sin θm̃ITEm̃ , (5.29a)

−K(2)
q̃m̃

1√
εa
ξm̃ sin θm̃HTM

m̃ +K(2)
q̃m̃ cos θm̃ETE

m̃

+ G(3)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

eiγs̃hAs̃ − G(3)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

e−iγs̃hBs̃

− G(4)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

eiγs̃hDs̃ − G(4)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

e−iγs̃hFs̃

= −K(2)
q̃m̃

1√
εa
ξm̃ sin θm̃ITMm̃ −K(2)

q̃m̃ cos θm̃ITEm̃ , (5.29b)

−
(
δ

(1)
g̃m̃ − δ

(2)
g̃m̃

1

Z
1√
εa
ξm̃

)
sin θm̃HTM

m̃ −
(
δ

(2)
g̃m̃

1

Z
+ δ

(1)
g̃m̃

√
εa ξm̃

)
cos θm̃ETE

m̃

− L(1)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

eiγs̃hAs̃ − L(1)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

e−iγs̃hBs̃

+ L(2)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

eiγs̃hDs̃ − L(2)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

e−iγs̃hFs̃

=

(
δ

(1)
g̃m̃ + δ

(2)
g̃m̃

1

Z
1√
εa
ξm̃

)
sin θm̃ITMm̃ −

(
δ

(1)
g̃m̃

√
εa ξm̃ − δ(2)

g̃m̃

1

Z

)
cos θm̃ITEm̃ ,

(5.29c)
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and(
δ

(1)
g̃m̃ − δ

(2)
g̃m̃

1

Z
1√
εa
ξm̃

)
cos θm̃HTM

m̃ −
(
δ

(1)
g̃m̃

√
εa ξm̃ + δ

(2)
g̃m̃

1

Z

)
sin θm̃ETE

m̃

+ L(3)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

eiγs̃hAs̃ + L(3)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

e−iγs̃hBs̃

+ L(4)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

eiγs̃hDs̃ − L(4)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

e−iγs̃hFs̃

= −
(
δ

(1)
g̃m̃ + δ

(2)
g̃m̃

1

Z
1√
εa
ξm̃

)
cos θm̃ITMm̃ −

(
δ

(1)
g̃m̃

√
εa ξm̃ − δ

(2)
g̃m̃

1

Z

)
sin θm̃ITEm̃ .

(5.29d)

Similarly, we rewrite Eqs. 5.22 and 5.23 as,

As̃ + Bs̃ = 0, (5.30a)

and

Ds̃ + Fs̃ = 0, (5.30b)

or Eqs. 5.24, 5.25, 5.26, and 5.27 as

G(1)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

As̃ − G(1)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

Bs̃ + G(2)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

Ds̃ + G(2)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

Fs̃

+K(1)
q̃m̃

1√
εb
ξ̃m̃ cos θm̃H̃TM

m̃ −K(1)
q̃m̃ sin θm̃ẼTE

m̃

= 0, (5.31a)

G(3)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

As̃ − G(3)
q̃s̃

iγs̃
εcκ2

0 − γ2
s̃

Bs̃ − G(4)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

Ds̃ − G(4)
q̃s̃

iκ0

εcκ2
0 − γ2

s̃

Fs̃

+K(2)
q̃m̃

1√
εb
ξ̃m̃ sin θm̃H̃TM

m̃ +K(2)
q̃m̃ cos θm̃ẼTE

m̃

= 0, (5.31b)



CHAPTER 5. RIGOROUS COUPLED WAVE ANALYSIS 107

−L(1)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

As̃−L(1)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

Bs̃+L(2)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

Ds̃−L(2)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

Fs̃

−
(
δ

(1)
g̃m̃ − δ

(2)
g̃m̃

1

Z
1√
εb
ξ̃m̃

)
sin θm̃H̃TM

m̃ +

(
δ

(1)
g̃m̃

√
εb ξ̃m̃ + δ

(2)
g̃m̃

1

Z

)
cos θm̃ẼTE

m̃

= 0, (5.31c)

and

L(3)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

As̃ + L(3)
q̃m̃

iεcκ0

εcκ2
0 − γ2

s̃

Bs̃ + L(4)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

Ds̃ − L(4)
q̃m̃

iγs̃
εcκ2

0 − γ2
s̃

Fs̃

+

(
δ

(1)
g̃m̃ − δ

(2)
g̃m̃

1

Z
1√
εb
ξ̃m̃

)
cos θm̃H̃TM

m̃ +

(
δ

(1)
g̃m̃

√
εb ξ̃m̃ + δ

(2)
g̃m̃

1

Z

)
sin θm̃ẼTE

m̃

= 0. (5.31d)

These equations make up a block matrix formulation, with

Ψ =
(
HTM
m̃ ETE

m̃ As̃ Bs̃ Ds̃ Fs̃ H̃TM
m̃ ẼTE

m̃

)T
, (5.32)

and the corresponding entries in Θ and M being filled by the matrices in

these equations. Note, the last two entries in this vector are not included

for closed cavities. Then, to find the unknown field components Ψ are found

by solving the matrix equation. Note, that for multiple cavities, the cen-

tral cavity expansion coefficient list is expanded to include the additional

unknowns.
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5.6 Conclusions and outlook

In this chapter we have detailed a powerful technique for modeling two-

dimensional periodic metamaterials. This method has significant advantages

over finite element or finite difference time domain simulations. This method

makes use of accurate, fast, and versatile calculations, with the majority of

the calculation overhead taken care of. Here, accuracy is limited by only by

the precision of computer algorithms, and runs extremely fast, even on stan-

dard computer workstations. Similar simulations take significantly longer

(on the order of hours) to solve, especially as the number of cavities per unit

cell increases.

From a computational point of view, a parameter variation sweep (i.e.

changing cavity dimensions, dielectrics) is an embarrassingly parallel prob-

lem, and we have written a simple distributed solve tool for this algorithm.

Parameter sweeps that take upwards of a week in a finite element solver can

be completed in a manner of hours using our tool. Various matrix equation

algorithms (i.e. LU decomposition, block matrix algorithms etc.) can be used

to further speed up these parametric sweeps.[74]

This approach can also be generalized to allow a combination of open

and closed cavities in a single unit cell. This would require extra care to
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be taken with the various heights h appearing throughout the expressions in

this chapter. Furthermore, although the structures discussed here are a fairly

simple cavity structures, with known waveguide solutions, this approach may

be generalizable to more complicated cavity shapes through appropriate co-

ordinate transformations or choice of basis functions.[75]

It may also be possible, using block matrix analysis, to write an ana-

lytic expression for the matrix inverse M−1. This may be a path towards a

complete analytic field analysis, without relying on numerical calculations or

various other approximations.



Chapter 6

Simulation methods

6.1 Introduction

In this chapter we discuss our methods of finite element simulations, including

approaches useful for increasing efficiency and optimizing structures. All of

the methods developed thus far in this thesis can only be applied to somewhat

simple systems, consisting of single-layer metal structures with cylindrical or

rectangular holes. Furthermore, these approaches rely on approximations

which break down with particular structures, or assumptions which do not

apply in some regions. Additionally, they are somewhat limited in the results

they provide. Thus, all of the theoretical and numerical methods are best

complemented with a full-field simulation approach which numerically solves

Maxwell’s equations (Eqs. 2.2) in a complicated region.

110
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6.2 The finite element method

In what follows here, we frame our discussion based on Ansoft HFSSTM elec-

tromagnetic simulation software, although much of it applies equally well

to other commercially available software. HFSS utilizes a finite element

(FE) method for solving Maxwell’s equations.[76] In this approach, the en-

tire structure is divided up into smaller, tetrahedral finite regions, i.e. mesh

cells, each with a local solution to Maxwell’s equations. The application

of boundary conditions between each cell yields a complete solution for the

entire structure.

Generally speaking, the finer the mesh, the closer the numerical solution is

to an actual, physically-measured system; an infinitesimally fine mesh should

exactly match a physical system. However, this comes at the expense of

computational efficiency. Typically, there is a balance to be struck between

a finer mesh and less-accurate solutions, and intelligent meshing algorithms

can greatly improve on simulation accuracy without sacrificing computational

efficiency. It is most important to have a fine mesh in a region where the

electromagnetic fields are expected to vary rapidly, while in regions where

the field varies slowly it is sufficient to use a coarse mesh. HFSS’s adaptive

meshing algorithms are usually adept at generating appropriate meshes for
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the regions, although it is possible to override the default approaches when

knowledge of the system can better guide the meshing method.

In this thesis we use two different types of solution methods: Eigenmode

and driven modal. An eigenmode solution finds the frequencies at which a

structure electromagnetically resonates, independent of any particular elec-

tromagnetic excitation or source. We use this method to generate the dis-

persion curves simulated in Chapter 3. Driven modal solutions, on the other

hand, calculate the scattering parameters for materials that are excited by

an electromagnetic source. We use this method for calculating reflection,

transmission, and other related parameters of structures as functions of fre-

quency, etc. This latter method is also the more common approach used in

this thesis.

6.2.1 Boundary conditions and excitations

Finite element simulations require one to define a large physical region to be

simulated, not just the metamaterial structure of interest. That is, one must

extend the simulation region beyond the narrowly-defined region containing

the structure to include air or other dielectrics around (i.e. above or below)

the metamaterial, see Fig. 6.1. This is unlike some other methods, such inte-

gral equation or boundary element method solutions, where it is sufficient to
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Figure 6.1: An example of a simulated region in HFSS. The metamaterial
structure is in the middle, topped by regions of dielectric. In this case,
periodic (master/slave) boundary conditions are applied at the sides of the
structure.
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describe just the “active” material.[76,77] We will call the complete physical

structure being simulated the “superstructure.”

Furthermore, boundary conditions (BCs) must be set at the spatial ex-

tents of the superstructure and, for driven modal solutions, excitations must

be defined. These conditions are determined by the type of structure being

simulated. For example, to simulate a finite structure under plane wave exci-

tation, radiation (incident or outward radiating, as appropriate) or perfectly-

matched layer (PML) boundary conditions are used on the outer surfaces.

For infinitely periodic arrays, on the other hand, master/slave (periodic)

or perfect-E/perfect-H (mirror symmetry) boundary conditions are used on

the periodic surfaces, typically in conjunction with a Floquet port (for mas-

ter/slave BCs) or wave port (for perfect-E/H BCs).

Each different combination of boundary conditions and excitations of-

ten requires careful attention to simulation setup to ensure physical results.

For example, periodic structures which lack mirror symmetry should not be

simulated using perfect-E/H BCs with a waveport excitation; instead they

require use of master/slave boundaries, with Floquet port excitations. In all

cases, the total size of the simulated superstructure must be large-enough to

capture any near-field effects, but not too large as to needlessly increase the

simulation time.
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Additionally, the inherently-finite size of the region introduces some ar-

tifacts to the simulation, some of which can be dealt with. Specifically, the

distance between the top (and bottom) of the superstructure and the meta-

material – i.e. the distance between where radiation enters the system and

the region of interest – should be large-enough such that any near-field effects

have decayed away before they reach those surfaces. This is particularly im-

portant for port-type boundaries, or solutions using far-field probes, as the

computer does not know that if the fields impinging on the port or probe

are local or truly far-field. In those cases, if non-decayed, near fields impinge

on the port or far-field surface, they will be included in the far-field reflec-

tion/transmission values, and will often yield values of total reflection plus

transmission greater than one – i.e. lack of energy conservation within the

simulation.

For finite structures, it is usually simple-enough to increase the complete

structure size. However, for periodic structures, there is another complica-

tion. As we discussed in Chapter 4, the evanescent decay length of the near

fields approaches infinity approaching diffraction frequencies (see Fig. 4.5).

For any finite-height periodic structure, there will be some frequency below

diffraction above which the decay length of the near fields is larger than the

structure’s total spatial extent. In these cases, the problem of energy conser-
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Figure 6.2: The total reflection plus transmission for a PEC aperture array
structure near a diffraction frequency, ωdiff . Approaching the diffraction fre-
quency from below leads to non-physical greater than one values when the
near fields reach the extent of the superstructure.

vation is inescapable, and simulated results within this region are inherently

nonphysical. Figure 6.2 shows a plot of total reflection plus transmission for

a PEC cylindrical periodic aperture array near a diffraction frequency, ωdiff .

The plot illustrates this problem, as approaching the diffraction frequency

from below leads to non-physical values of this sum, as the near fields reach

the extent of the superstructure. Note that the frequency range affected by

this varies for different structures.
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6.2.2 Typical methods of extracting relevant solution
information

The resonant properties of the cavity modes can be analyzed using a few

different methods. The easiest, and typically fastest way to extract reflec-

tion and transmission results is using waveports. For this approach, HFSS

directly calculates the S-parameters for all modes, which are easily used to

calculate the reflection and transmission coefficients. For finite structures

with radiation boundary conditions one can either integrate the outward-

facing Poynting vector (i.e. net energy flow) over the exterior surface, which

is tedious to do and not-always entirely accurate in HFSS, or set up a far-

field probe to measure it. With all of these approaches, the structure must

be sufficiently large to ensure the exterior or far field probe surface is far

enough away so near field effects can decay, as previously discussed.

Additionally, the cavity resonances can be determined indirectly from

the extracted values of reflection and transmission. In order to excite a

cavity mode resonance, there must be a non-zero component of the inci-

dent electric (TM) or magnetic (TE) fields perpendicular to the plane of the

metal-superstrate interface in order to excite a TE or TM cavity mode, see

Chapter 5. Thus, light striking the metamaterial normal to this interface,

which has neither an electric nor a magnetic field component perpendicular
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to the interface (TEM), can not directly couple to a cavity mode. How-

ever, off-normal reflected waves, both propagating and evanescent, do have

nonzero z-components to the fields and can thus couple to a cavity mode.

Therefore, in order to couple light to a cavity mode, light must reflect in

an off-normal direction. Thus, if light strikes the metamaterial normally at

an off-resonance frequency, the light will be reflected back normally, as well.

However, at a resonance, the light is coupled, via the excited cavity mode,

into off-normal reflection. In a simulation, these scattered fields are captured

by higher order Floquet ports, and there is a corresponding dip in the normal

reflection.

While these straightforward metrics are useful for a simple comparison

to standard experimental measurements, they are insufficient for calculating

other properties, specifically field or absorption localization. For these quan-

tities, one must make extensive use of the HFSS field calculator. This tool

grants access to the raw, solved field data. For example, to measure the total

electromagnetic energy absorbed in a particular piece of a structure, the vol-

ume loss density (i.e. the fraction of incident energy absorbed) derived from

the solved electromagnetic fields can be directly integrated over the volume

or surface of interest. Similarly, to measure field strength, the time-averaged



CHAPTER 6. SIMULATION METHODS 119

electromagnetic energy density,

u = ε |E]2 + |B|2 , (6.1)

of the solved electromagnetic fields can likewise be directly integrated over

any volume or surface.[24] At cavity resonances, the ratio of the cavity en-

ergy to the total energy will exhibit a maximum. Although the magnitude

of the maximum is dependant on the size of the simulated structure, i.e.

the volume of the superstrate in the simulated structure, and is therefore

somewhat arbitrary, we can still use the position of the maximum (with re-

spect to wavelength or frequency) to locate cavity resonances. This metric

is useful for determining where in a structure the fields or absorption are

localized, however these results are generally difficult to measure, and thus

verify experimentally.

While both the direct and indirect methods are each sufficient to charac-

terize the cavity resonances, the choice of method is generally determined by

the choice of boundary conditions or desired functionality. For example, for

non-periodic structures, with radiation and/or PML boundary conditions,

where there are no S-parameters, the method of choice is the direct integra-

tion of the reflected power or electromagnetic energy densities. This process,

however, can be quite time and resource intensive, as the solved fields must
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Figure 6.3: Resonance response of periodic arrays of rectangular cavities
calculated via two different methods for three different indices of refraction
(dielectric fills superstrate and cavity). The dips in reflected power corre-
spond to the peaks in energy density. The apparent narrowness of the peaks
in reflected power are due to the log (dB) scale. Here h = 400 nm, ` = 316.4
nm and w = 79.1 nm with a period of 380 nm.

be saved and energies calculated at every solved frequency. For periodic and

Floquet port structures, however, it is quicker to find the S-parameters than

to integrate the energies. Results for both methods are compared in Fig. 6.3,

and we make use of both approaches in this thesis.

6.3 Material parameters

HFSS, like many other electromagnetic simulation software, is primarily de-

signed to model structures at microwave frequencies. As such, unless other-

wise specified, it utilizes a surface impedance-type boundary condition on any
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metals with bulk conductivities greater than 105 Siemens/meter.[76] Even

when forced to “solve inside” a high-conductivity structure, it still utilizes

the bulk-conductivity values, often extrapolated from microwave frequencies

to higher frequencies, to calculate the effective dielectric properties. However,

as discussed in Chapter 3, metals at optical frequencies are not well-described

by a simple, high value of bulk conductivity, see Fig. 3.1. Thus, although

the mathematics of Maxwell’s equations is scale invariant, and HFSS can, in

principle solve at optical frequencies, extra care must be taken with metals.

Furthermore, HFSS also includes a rather large materials library, which

includes metals, dielectrics, and semiconductors. However, these, too, are

based on their values at microwave frequencies. For example, the model

library claims that water has a constant dielectric permeability of ε = 81

(Fig. 6.4(a)), while water’s actual dielectric constant is closer to ε = 1.332,

and is dispersive, see Fig. 6.4(b).[78] Therefore, as with metals in HFSS, one

can not use the default materials at optical frequencies.

Fortunately, HFSS allows users to create their own materials. Thus, when

simulating materials at optical frequencies, one must import experimental

values, or utilize theoretical expressions for the dielectric properties. How-

ever, the necessity of solving inside all metal structures adds significantly to

the complexity of the simulation, and thus demands increased computational
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n � 81 � 9

(a) The built-in material properties for
water in HFSS’s materials library.

(b) The true, dispersive optical response
of water.[79]

Figure 6.4: An illustration of the problems with using the built-in material
parameters for metals at optical frequencies.

resources. Generally speaking, the number of mesh cells required for equiva-

lent volumes of metal and a simple dielectric differ by an order of magnitude.

That is, while a particular volume of water may require 104 mesh cells in

order to reasonably model it, the same volume of gold requires 105.

6.3.1 Efficient simulation of optical metals

The order of magnitude difference in computation cost per volume of metals

versus dielectrics at optical frequencies necessitates an efficient method of

simulating metamaterials with relatively-large volumes of metal. There are

two basic approaches towards overcoming this issue. The first is to minimize
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Figure 6.5: Using the arguments of the SDBC to simplify FE simulations for
complicated structures. Here, we have minimized the amount of “real metal”
in the simulation.

the amount of metal actually meshed, and the second is to utilize paralleliza-

tion – “domain decomposition” in HFSS – and a high-performance computing

cluster.

To develop an the first approach, where we try to minimize the amount

of metal which HFSS must mesh, we will use the physical arguments behind

the SDBC, discussed in Chapter 3. Specifically, we again make use of the

argument that the majority of the fields that penetrate the metal are ulti-

mately constrained within a skin depth into the metal, and beyond that point

it is effectively a PEC. Thus, in defining material parameters for the metal

portions of the structure, it is only necessary to include a thin film of “real”

metal (i.e. the true material parameters) and to treat the rest of the metal

either using a surface impedance boundary condition as in the microwave
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range, or even to set it as a PEC, see Fig. 6.5. Unlike for the analytical

calculations done in that chapter, for numerical purposes it is necessary to

extend the “real metal” portion of the structure up to two or three skin

depths. Furthermore, although in Chapter 3 we analytically showed results

for simple rectangular or cylindrical apertures, we can use this approach for

complicated structures in simulation, where an analytical approach may not

be feasible, see Fig. 6.5.

Although minimizing the amount of metal simulated in a structure can

often allow a previously computationally-intractable structure to be simu-

lated, there are situations where this is either inapplicable or insufficient.

For example, if the structure is electrically large, or if the material has many

apertures, especially if they are each only a skin depth or two away from

each other. In these cases the number of mesh cells requires more RAM than

a typical machine has. While this can be solved by throwing more RAM at

the problem, it is often more efficient to utilize a parallelization method. In

this approach, the superstructure is broken smaller pieces, each one solved

on a different machine. Then, the boundaries are stitched together with

appropriate boundary conditions, as if each section of superstructure was

an individual mesh cell.1 There are some limitations to implementing this

1It is worthwhile noting that is a conceptual description of the approach; the details
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approach, most notably it is not available in HFSS (or most other solvers)

with master/slave periodic boundary conditions, but this is another powerful

approach for efficient simulation of structures with large amounts of optical

metals.

6.4 Optimization approaches

Another advantage of using computer simulation in the metamaterial design

process that is worthwhile briefly noting is the ability to optimize a struc-

ture. That is, given a set of constraints and a starting structure, HFSS can

algorithmically change various structural or material parameters to find a

new structure which better meets the design goals.[76] The method we use

most often is the gradient-based, Quasi-Newton approach,[80] which is based

on Newton’s root-finding algorithm.[81]

We have found, in practice, that these optimization methods work best

when the initial model is fairly close to the having the desired properties.

For example, in the fabricated microwave structure discussed in Chapter 9,

we initially designed the structure using ECR, followed by some additional

simulations with more complicated dielectric materials. We found a decent

device, see Table 6.1(a), which became an excellent device, see Table 6.1(b),

involve block-matrix algebra and various preconditioning tricks, see the HFSS Manual for
complete details.[76]



CHAPTER 6. SIMULATION METHODS 126

Absolute Absorption (%)

Frequency (GHz) E1 E2

8.1 83 3
9.6 18 73

(a) The performance of the initially-guessed structure.

Absolute Absorption (%)

Frequency (GHz) E1 E2

8.1 96 1
9.6 5 93

(b) The performance of the optimized structure.

Table 6.1: The improvement in a device’s performance after optimization.

after solving 120 variations in just over 3.5 hours.



Part III

A Novel Application:
Light-splitting metamaterials
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Chapter 7

Horizontally-oriented
multi-junction solar cells

7.1 Introduction

The search for renewable, environmentally benign energy sources is one of

the most significant technical challenges of the 21st century.[82] Novel light

harvesting techniques, such as dye-sensitized Grätzel cells, are an important

innovation which allows many different methods of charge separation that do

not have the limitations of traditional semiconductor solar cells.[83, 84] For

example, many different biomimetic charge separation methods exist, all of

which require concentrated light in a specified bandwidth.[85, 86] However,

these devices generally have the lowest overall cell efficiency of all research

solar cells, see Fig. 7.1, on the order of 10%. This is primarily due to the

fairly-narrow bandwidth of absorption in these materials.
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Figure 7.1: The best research solar cell efficiencies, plotted as a function of
time.[87] Multi-junction solar cells (purple) show the highest efficiencies.

On the other side of the efficiency spectrum are multi-junction (MJ) solar

cells, with efficiencies approaching 45%. A traditional silicon (or any semi-

conductor) solar cell is bandgap limited. That is, below the bandgap photons

are not absorbed, and above the bandgap they only generate the bandgap

energy per photon, even for higher-energy photons. A multi-junction solar

cell (see Fig. 7.2(a)), on the other hand uses a few different semiconductors

in a vertical stack to try and more efficiently utilize a broader portion of

the solar spectrum, see Fig. 7.2(b). While these cells are significantly more

efficient than their competition, they are also very expensive to manufacture,
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and thus are typically used in concentrator arrays which limits their broad

usage.[88]

7.2 Metamaterials for solar energy

We can use a metamaterial to achieve the benefits of multi-junction devices

while utilizing many of the new charge separation techniques. In fact, it

has been shown that separating light into different physical regions based

on wavelength can greatly increase the overall efficiency of solar cells based

on these technologies.[91–93] However, those devices are large and expensive

to manufacture, while a metamaterial-based device would consist of a sin-

gle metamaterial layer, see Fig. 7.3. In a metamaterial device, the light is

split and concentrated, sorting photons of different bandwidths into different

regions of the structure. Each region can then be filled with the appro-

priate absorber for that bandwidth, creating a horizontally-oriented multi-

junction solar cell. This enhanced optical concentration, along with the abil-

ity to separate different bandwidths of light in different physical regions of

a horizontally-oriented metamaterial can yield significantly greater solar cell

efficiencies when coupled with new charge separation methods.

It is important to note that there are some limitations to this approach.

Firstly, there are significant fabrication challenges in making these devices.
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(a) A schematic of a traditional multi-
junction solar cell.[89]

(b) The solar spectral irradiance overlayed with a a single-cell silicon solar cell’s absorption

spectrum and, b a multi-junction cell’s absorption.[90] The multi-junction cell can more
efficiently use a greater portion of the solar spectrum.

Figure 7.2: Some properties of a traditional multi-junction solar cell.
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The small feature sizes means that any device based on this sort of metama-

terial must be fabricated initially using electron beam lithography, followed

by imprint lithography. Furthermore, as discussed many times in this thesis,

metals at optical frequencies are far from perfect conductors, and can actually

absorb a sizeable amount in incident light. Additionally, for a multi-junction

device for electricity generation, the individual cavities must be electrically

isolated from each other to ensure optimum charge extraction, which has ad-

ditional design implications. Moreover, most of the biomimetic, or dye-based

absorbers require immersion in water. Finally, all of these structures must

be designed with a periodicity small-enough that any frequencies of interest

are below diffraction, for reasons discussed in Section 4.3. Nevertheless, this

is a novel approach, which is worth investigation.

7.2.1 Mechanism of photon sorting

The mechanism responsible for the light channeling towards, and into the

cavities is explained if one considers the time-reversed situation of light ex-

iting an aperture. For linear materials (see [94] for exceptions), Maxwell’s

equations and its solutions are invariant under complex conjugation.[24] In a

lossless structure this simply amounts to time reversal symmetry (i.e. a eiωt

time dependence transforms to e−iωt), while a lossy dielectric transforms to
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Figure 7.3: A metamaterial-based, horizontally-oriented multi-junction solar
cell.

a gain material, in addition to time-reversal. Considering the time-reversed

version of our structure, light generated at resonance by a gain material

within an individual cavity, upon exiting, will spread out and form a diffuse

beam.[95] Now, for an infinitely periodic array of apertures with gain me-

dia, in which radiation is generated with well-defined phase relationships, the

light exiting each aperture diffracts in the same way as a single aperture, and

will constructively interfere with the light exiting all the other apertures to

create an outgoing plane wave. Note that each array of identical cavities will

resonate (and radiate) light at their own resonant frequencies, independent

from the (different) resonances of the other-sized cavities. The collective ef-
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fect of light radiating from each aperture results in plane waves in the far

field. Thus, transforming back to the forward-time with a lossy material, it is

expected that light will converge towards (i.e. be channeled into) the cavities

as it approaches the entrances to the apertures, and ultimately be absorbed.

7.3 Outlook

There has been some prior research on multi-band frequency selective surfaces

to increase the capabilities of multi-frequency microwave antennas by adding

subreflectors capable of operating at multi-frequency bands,[96–98] and in

bimetallic nanoantennas,[99] or plasmonic gratings for the visible regime.[100]

The devices demonstrated in these studies lack any multi-functional proper-

ties (i.e., photon sorting, localization and absorption), unlike the structures

described in this work.

Some previous work on polarization-splitting,[60] and wavelength-selective

compound grating structures,[11,59,60,101–103] dealt primarily with trans-

mission properties, and the devices were not optimized for absorption. It

has been established that light can be localized in a single region of a nano-

aperture structure,[104] however it has been demonstrated only at a single

spatial location. While there is some work involving periodic grating struc-

tures for frequency selective absorption of electromagnetic radiation,[105–
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107] these devices are highly polarization-dependent, a limitation that is not

shared by the devices described in this work.

In this part of the thesis, we present two different classes of polarization-

independent, photon-sorting metamaterials which operate at various portions

of the electromagnetic spectrum. The first device is an early prototype, with

interspersed L-shaped cavities. This device was simulated under PEC and

optical metal conditions, fabricated, and nominally characterized. The sec-

ond device contains interspersed cylindrical cavities, and has been simulated,

fabricated and characterized for the microwave spectrum, and a path towards

IR and visible wavelengths has been shown in simulation.



Chapter 8

Rectangular and L-shaped
cavity arrays

8.1 Introduction

In this chapter we design a light-splitting and concentrating, polarization-

independent metamaterial that operates at optical frequencies, although the

initial design assumes PEC metals. The material is a compound subwave-

length cavity array, consisting of two L-shaped cavities, arranged in a 700nm×

900nm periodic array. The cavities themselves are not deeply subwavelength

in size; feature sizes are approximately λ/(2
√
ε) where ε is the dielectric

permittivity within the cavities. Thus from the perspective of incident ra-

diation of wavelength λ, the material does not appear to be of homogenous

composition with spatially-independent, effective values of ε.

This device concentrates electromagnetic energy within the cavities, with
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the electromagnetic energy density in the excited structure as much as two

orders of magnitude greater than that in the unexcited structure in the mi-

crowave regime. These values correspond to very high light splitting and

concentration efficiencies, with 97-99% of the concentrated light in the de-

sired cavity and a light concentration factor as great as 292.

We also discuss the design, fabrication and characterization of a scaled-

down structure, designed to operate in the visible regime. While light split-

ting was not experimentally verified due to technical and financial considera-

tions, there is some indirect experimental evidence of enhanced field buildup

within the cavities. Note, that all of the initial simulations use PEC condi-

tions on the metal even though the dimensions are set for optical frequencies;

changing to optical metals shifts the resonances down, as described in Chap-

ter 3.

8.2 Metamaterial design

By adjusting the dimensions of the cavity one can tune the resonance response

of the structure to build up a field resonance inside the cavities at particular

target wavelengths λ, see Chapter 4. Here, however, we will ultimately be

analyzing structures which are difficult to describe using the ECR model, and

we suffice with the naive approach described in 4.2.1. That is, here we choose



CHAPTER 8. RECTANGULAR AND L-SHAPED ARRAYS 138

the initial dimensions of rectangular cavity structures based on Fabry-Pérot

waveguide theory, where the cutoff frequencies ωmn or wavelengths λmn are

given by

ωmn
c

=
2π

λmn
=

π√
ε

(
m2

`2
+
n2

w2

)1/2

, (8.1)

where ` is the length of the cavity and w is the width, ε is the dielectric con-

stant of the material filling the cavity, and m and n are integers. The lowest

order cutoff mode is determined by the larger of the two cavity dimensions

`, see Fig. 8.1(a). Inverting this equation to solve for ` in terms of the target

cutoff wavelength λmn = λ10 ≡ λ gives

` = λ/(2
√
ε). (8.2)

Structures with a 2:1 aspect ratio are easily fabricated using standard

techniques. As such, we choose

w = λ/(4
√
ε). (8.3)

In practice, however, adjusting the width of the cavity introduces a small

shift in the cavity resonance, and affects the Q of the cavity, see Fig. 8.1(b).

Additionally, we choose the thickness, h, to be

h = λ/
√
ε (8.4)
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to allow a complete node in the vertical direction; adjusting the thickness

also introduces a shift in resonance and changes the Q of the cavity, see

Fig. 8.1(c). Thus, all cavity dimensions are now given in terms of the target

wavelength. Furthermore, scaling all dimensions of the complete structure

by a factor α, while keeping ε constant, shifts the resonances by αλ0 or ω0/α,

see Fig. 8.1(d).

8.2.1 Demonstration of polarization independence

The optical response of arrays of rectangular structures, however, is polar-

ization dependent, which greatly limits their use in solar applications. The

cavity mode response of the rectangular structures is tied strongly to light

polarized along the short side of the rectangle, see Fig. 8.2(a). Light polar-

ized along the long side of the rectangle is reflected back with minimal cavity

interaction. However, light polarized along the short side interacts strongly

with the cavity, exciting a cavity mode resonance, which couples light into

off-normal reflected modes. The maximum dip in normal reflection at 618 nm

shown in Fig. 8.2(a) corresponds to strong excitation of the cavity, which can

be seen in the field structure in the inset.

Recently, “L-shaped,” open channel structures have been shown to posses

polarization-independent responses.[108,109] Here we extend this analysis to
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Figure 8.1: The effect of cavity dimensions length (a), width (b) and depth
(c), as well as uniform structure scaling (d) on resonance response of rectan-
gular cavities embedded in a perfect electric conductor. The inset plots show
the full-width-half-max Q of the resonance fit to a Gaussian.
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include closed cavities. To create a polarization-independent cavity we join

two, perpendicularly oriented rectangular cavities at a corner to create an

L-shaped cavity. The L-shaped cavities, display nearly identical responses

to both polarizations of light, see Fig. 8.2(b). Light polarized along either

direction interacts with the long side of whichever rectangle is in line with

its polarization, exciting cavity mode resonances in one leg of the structure.

These resonances, in turn, couple light into off-normal reflected modes, caus-

ing the decrease in normal reflection at λ = 609 nm seen in Fig. 8.2(b). Here,

again, the maximum dip in normal reflection at 609 nm corresponds to strong

excitation of the cavity, which can be seen in the field structure in the inset.

It is worthwhile noting that although it is through one leg of the L that

light couples to the cavity, the fields ultimately spread throughout the entire

cavity, see Fig. 8.3. This means that all polarization can interact with absorb-

ing molecules throughout the entire structure. Additionally, this mechanism

has potential applications in polarization rotating metamaterials, or possibly

for making a non-reciprocal structure.

After tuning the responses of two individual cavities to two different wave-

length bands, we tile the two different cavities in a periodic array. Each cavity

targets a separate wavelength band, and, as discussed earlier, can be filled

with different light-absorbing complexes, see Fig. 8.4.
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(a) Reflection from rectangular cavities, with cavity mode indicated
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magnitude of the electric field in the cavity at λ = 618 nm.
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(b) Reflection from L-shaped cavities, with cavity mode indicated
by the arrow at λ = 609 nm. The large dip in normal reflection at
∼ 710 nm corresponds to scattering due to diffraction. Inset shows
magnitude of the electric field in the cavity at λ = 609 nm.

Figure 8.2: The resonance response of the rectangular (a) and L-shaped
(b) cavities. Plots show only the normal reflection from the metamaterial
structures for each polarization while the field profiles are shown using the
entire field results (i.e. both polarizations).
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Figure 8.3: Magnitude of the electric field in an excited L cavity excited via
light polarized along the y-direction. It can be seen that the whole cavity
participates in the resonance regardless of the polarization of the incident
light.

Figure 8.4: Schematic of interspersed L-shaped cavity metamaterial struc-
ture.
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8.3 PEC simulation results

We initially chose to target wavelengths of 790 nm and 632 nm for the two

cavities, corresponding to two standard fluorophores’ absorbtion peaks for

future experimental verification. The dimensions of the rectangular cavities

used to make the legs of the L’s are `1 = 254.8 nm, w1 = 127.4 nm, `2 = 328.3

nm, w2 = 164.2 nm with a uniform depth of 474.6 nm, and with a pitch of

700 nm and 900 nm in the x and y directions. The cavities are embedded in

a perfect electric conducting film.

Simulations were conducted using vacuum as the dielectric in both the

cavity and superstrate; for other dielectrics the resonance shifts, as discussed

earlier. Fig. 8.5 shows the simulated intensity of light specularly reflected

from the metamaterial surface. As discussed earlier, dips in the reflection

intensity are correlated with optical resonances occurring within the cavity.

We have labeled the two cavity resonances at 632nm and 790nm, which are

excited by both polarizations.

Note, that although structures with only one L per unit cell are excited

equally by both polarizations, see Fig. 8.2(b), in this tiled array the response

is not identical for both polarizations. Here the two cavities are not oriented

in the same direction and the fields interact with both structures simultane-
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ously. This effect can be seen in Fig. 8.6(a) where one leg of the smaller L is

excited asymmetrically and off its resonance wavelength. Nevertheless, the

response is polarization-independent in the target cavities.

Additionally, this plot only shows the specularly reflected signal. Diff-

racted waves, which are picked up by other, higher-order ports (which may

or may not be included in the simulation), also cause significant, sharp dips

in the specular reflection. These points are indicated by arrows in the figure

at 700 nm and 900 nm, the first-order diffraction points, and the dips in

reflection are not indicative of a cavity mode.

Although useful for identifying the position of cavity mode resonances,

the dips in specular reflection are relatively small, and are not the best met-

ric for analyzing the capability of a structure to strongly concentrate light

within the cavity. Furthermore, in the PEC model simulated here, there is

no energy loss within the simulated structure, and all of the energy which

enters the system must, ultimately, be reflected back out. For a solar energy

application, however, the strong fields excited inside the cavity at resonance

greatly enhance the inherent absorbtion capabilities of the charge separation

complexes, and hence the dips in the reflection and corresponding energy

absorbed would be greatly magnified. Nevertheless, we can quantify the

capabilities of this structure to both split and concentrate light.
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Figure 8.5: The simulated normal reflection intensity of the interspersed L-
shaped cavity structure. The arrows point out the lowest order diffraction
effects.

790 nm 632 nm

HaL HbL

Figure 8.6: Magnitude of the electric field (log scale) at the opening of the
L-shaped cavities at λ = 790 nm (a) representing the maximum excitation
of the larger L structure and at λ = 632.8 nm (b) representing the maximum
excitation of the smaller L structure.
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790 nm 632 nm

HaL HbL

Figure 8.7: Simulated electromagnetic energy density (log scale) inside the
cavities at λ = 790 nm (a) representing the maximum excitation of the larger
L structure and at λ = 632.8 nm (b) representing the maximum excitation
of the smaller L structure.

8.3.1 Light splitting and concentration metrics

To confirm that this response is due to the cavities, we calculate the energy

stored by the fields in the cavities at the target wavelengths, shown in Fig. 8.7.

Observe that when each of the resonances is excited at its associated resonant

wavelength, the other structure is largely unexcited (note that the fields are

plotted on a logarithmic scale). The ratio of either the energy density ρ

or of total energy E in the excited structure versus the unexcited structure

represents the quality of the light-splitting between the two cavities.

Thus, to calculate the light splitting efficiency, SEn, we use the ratio of

total electromagnetic energy captured in the desired cavity En to the total
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Figure 8.8: Simulated light splitting efficiency for both L structures for a
range of frequencies. Targeted resonance locations are labeled.

energy in both cavities, ET = E1 + E2

SEn ≡
En
ET

, (8.5)

i.e. the fraction of photons correctly split. Simulated values of this quantity

over a range of frequencies is shown in Fig. 8.8. The targeted resonance lo-

cations are labeled. It remains to be understood why the splitting efficiency

near the 790nm resonance is wider than at 632nm. The simulated values of

E, ρ and SE at our target frequencies are summarized in Table 8.1. Our

structures show very strong light splitting at the desired wavelengths. The

ratio of total energy in the excited vs. unexcited structure is 387.96 (42.95),
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and the ratio of energy densities is 664.21 (25.87) at the 632.8 nm (790 nm)

wavelength resonance. This corresponds to an extremely-high light separa-

tion efficiency of 99.74% (97.72%).

Note, however, that the splitting efficiency does not depend on the amount

of light concentrated in the cavities relative to the superstrate, and, as such,

must be considered together with the overall light concentration. The light

concentration factor CF will depend on the relative increase in total energy

En stored inside the cavity of volume Vn, as compared to the total energy

stored in an equivalent volume of superstrate,

Eeq
s = ρsVc, (8.6)

where ρs is the average electromagnetic energy density in the superstrate,

normalized by the fractional surface area of the unit cell used by the cav-

ity opening, S = Ss/Sn. This is an analogous idea to the enhanced optical

transmission metric used to characterize a structure’s improvement in trans-

mission.[17,52] That is

CFn ≡ S

(
En − Eeq

s

Eeq
s

)
= S

(
ρn
ρs
− 1

)
. (8.7)

This value corresponds to the fractional increase in electromagnetic energy

in the cavity compared to the superstrate due to the light-concentrating

properties of the cavity.
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Note that when the average energy density in the cavity is the same as

in the superstrate (ρn = ρs), then CF is zero, i.e. there is no light concen-

tration. Values of CF greater than zero correspond to a cavity resonance,

where large, constructively interfering cavity mode fields are excited within

the cavity. A concentration factor of one, for example, represents a 100%

greater concentration of light in the cavity compared to the superstrate re-

gion. Negative values of CF correspond to light not actively coupling into

a cavity mode, i.e. relatively less electromagnetic energy in the cavity than

in the superstrate. The combination of a large concentration in one cavity

and a small, or negative concentration factor in the other is also indicative

of light splitting.

Additionally, note, that if the fractional surface area of the cavity can be

decreased without decreasing the amount of energy stored in the cavity then

the concentration factor increases. This directly quantizes the ability of the

structures to efficiently channel light while minimizing the structure’s surface

area. This property, in principle, allows for a greater number of splitting

cavities per unit cell, in turn, yielding the ability to construct multi-junction

solar cells with the ability to capture a greater portion of the solar spectrum.

Simulated values of this quantity over a range of frequencies is shown

in Fig. 8.9. The targeted resonance locations are labeled. It remains to be



CHAPTER 8. RECTANGULAR AND L-SHAPED ARRAYS 151

300 350 400 450 500 550 600

0

50

100

150

200

99
9

85
7

74
9

66
6

60
0

54
5

50
0

Frequency thz

S
p

lit
ti

n
g

E
ff

ic
ie

n
cy

%


Wavelength nm

632 nm

790 nm

632nm cavity
790nm cavity

Figure 8.9: Simulated light concentration factor for both L structures for a
range of frequencies. Targeted resonance locations are labeled, along with
the CF peak.

understood why the concentration factor is not peaked at 790nm, where the

resonance appears in the reflection analysis. Nevertheless, there is still sig-

nificant light concentration at the desired wavelength. The simulated values

for ρ and CF at our target frequencies are summarized in Table 8.2. Note

that our structure shows very strong light concentration, with average en-

ergy densities in the cavity 23.56 (7.49) times the average superstrate energy

density for 632.8 nm (790 nm) light. This corresponds to very high light

concentration factors of 291.92 (50.57). Note that the negative values of CF

for the cavities off-resonance acts as another illustration of the strong light
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Total Energy Energy density Splitting efficiency

λ (nm) f (THz) E1/E2 E2/E1 ρ1/ρ2 ρ2/ρ1 E1/ET E2/ET

632.8 473.8 387.96 0.00 644.21 0.00 99.74 0.26
790 379 0.02 42.95 0.04 25.87 2.28 97.72

Table 8.1: Total electromagnetic energy E, average energy density ρ and
percent splitting efficiency SE at target wavelengths. Here, the subscript
1 corresponds to the cavity tuned to concentrate 632.8 nm light, and the
subscript 2 corresponds to the cavity tuned to concentrate 790 nm light.

Energy density Concentration factor

λ (nm) f (THz) ρ1/ρs ρ2/ρs CF1 CF2

632.8 473.8 23.56 0.04 291.92 -7.51
790 379 0.29 7.49 -9.19 50.57

Table 8.2: Average energy density ρ and concentration factor CF at target
wavelengths. Here, the subscript 1 corresponds to the cavity tuned to con-
centrate 632.8 nm light, the subscript 2 corresponds to the cavity tuned to
concentrate 790 nm light, and the subscript s corresponds to the superstrate.

splitting capabilities of this structure.

8.4 Results at optical frequencies

Having demonstrated that these devices are polarization independent and

spatially split and concentrate light with frequency dependence with an ideal

metal, we now turn to analyzing how these effects change with the introduc-

tion of real metal.

In this section we again describe rectangular and L-shaped cavities, where

the resonances are chosen in the optical regime, nominally at 632nm and
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790nm corresponding to two standard laser and fluorophore excitation wave-

lengths. These wavelengths were chosen as we initially intended to measure

concentrated light splitting, however, this has not been realized experimen-

tally. Furthermore, the resonances were not at the target wavelengths in the

fabricated devices, for reasons which we will discuss.

There are four different structures which we have fabricated, simulated

and tested. The first two are arrays of single rectangular cavities – a large

and a small one – which display resonances but are polarization dependent

in their response. The next is a compound cavity array, with both the large

and small rectangles in a single unit cell. Finally, we present and comment

on a double-L structure, essentially a scaled-down version of the structure

discussed in the previous section.

8.4.1 Fabrication

We fabricated prototype devices using electron beam (e-beam) lithography.

We begin with a bare, 4-inch single-side polished Si wafer. The wafer is

cleaned with hot piranha etch (a mixture of sulfuric acid and hydrogen per-

oxide). A conductive seed layer, consisting of a 5 nm titanium adhesion layer

followed by 100 nm of gold, is deposited using a electron gun evaporator.

Next, a 300 nm thick NEB-31A3 e-beam resist is spun on top of the seed
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layer. The pattern is exposed with a dose of 35-40 C/cm2. Figure 8.10(a)

shows a scanning electron microscope (SEM) image the developed pattern in

the resist.

The surface is mildly de-scummed in downstream plasma, and gold is

plated around the resist features using pulse-plating in a non-cyanide elec-

troplating solution. The gold thickness is measured at around 260 nm. Fig-

ures 8.10(b) and 8.10(c) show the surface after electroplating. The cavities

are now defined by the L-shape of the resist. The resist is then stripped in

acetone with the help of ultra-sonication followed by a short oxygen plasma

de-scum. Figure 8.10(d) shows a top down view of a final resulting device.

Several shapes besides the L-shaped cavities have been fabricated in order

to characterize the operation of the cavity structures in general, including one

and two rectangular structures, as well as single L-shaped cavities per unit

cell, as shown in Fig. 8.11. We will discuss the single and double rectangle

apertures and the double L-shaped apertures.

8.4.2 Measurement and simulation results

The aggregate optical response of different structures (e.g. size, shape) is

noticeably different, see Fig. 8.12. This apparent color difference is due to

the frequency-dependence of the optical response. Others have also noted
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(a) SEM of the apertures patterned in e-
beam resist.

(b) SEM of the surface after gold plat-
ing. At this step, the L-shaped resist is
surrounded by metal, both on the sides
and below.

(c) Top down SEM of the surface after
plating.

(d) SEM image of the final device after
resist stripping.

Figure 8.10: The results of the fabrication process for making the L-shaped
metamaterial.
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(a) One rectangle per unit cell. (b) Two rectangles per unit cell.

(c) One L per unit cell.

Figure 8.11: Assorted permutations of fabricated metamaterials.
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Figure 8.12: Optical microscope image of patches of different-sized and
shaped cavities set in gold. The difference in optical response (green to
reddish color) is due to the different cavity shapes and dimensions.

that the nanostructure of a metal film plays a large role in the apparent

color of a metal film.[110] To quantify this response, we directly measured the

frequency-dependent reflection response. Reflection measurements on these

devices were carried out on a Newport Oriel MS 257 monochromator and

imaging spectrograph. The patterned wafers were first treated in a hydroxy

thiol solution, and then immersed in deionized water. The measurements

are all of specular reflection, normalized with respect to the reflection of a

un-patterned, gold coated silicon wafer.

Rectangular cavities

As discussed in Section 8.2.1, rectangular apertures are polarization sensitive.

This applies to visible frequencies, as well. Figure 8.13 shows experimental

and simulated specular reflection from arrays of rectangular cavities, which
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illustrates this property. Here, H polarization is along the short side of the

cavities. We have labeled the cavity modes (CM) and diffracted modes (DM).

There is decent agreement between the simulation and the measured results;

any substantial differences are due to imperfections in the fabricated sample.

That is, there is corner rounding, as seen in Fig. 8.11, and some variation in

cavity sizes – both of which are not relevant in simulation – which shifts the

cavity mode resonance.

The optical response of the compound structure, with both a large and

the small cavity in each unit cell, is largely the sum of the response of the

individual structures. Figure 8.14 shows a plot of experimental reflection

from individual cavity arrays, as well as arrays with both cavities in a unit

cell. The independence of each resonance is thus demonstrated, as there is

negligible shifting of the resonances when both cavities are present.

L-shaped cavities

As discussed in Section 8.2.1, L-shaped structures are polarization indepen-

dent. This applies to visible frequencies, as well, at least in simulation. Fig-

ure 8.15 shows experimental and simulated specular reflection from arrays of

L-shaped cavities. The simulated response of the nominal design is largely

polarization independent, as with the PEC case. However, the experimental
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(a) Array of smaller rectangles.
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(b) Array of larger rectangles.

Figure 8.13: Frequency-dependent experimental (Exp) and simulated (Sim)
reflection from arrays of rectangular cavities in gold immersed in water. H
polarization is along the short side of the cavities. Cavity modes (CM) and
diffraction modes (DM) are labeled.
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(a) Polarization along short side.
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(b) Polarization along long side.

Figure 8.14: Frequency-dependent experimental reflection from arrays of in-
dividual (colored) and compound (black) rectangular cavities in gold. H
polarization is along the short side of the cavities.
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Figure 8.15: Frequency-dependent experimental (Exp) and simulated (Sim)
reflection from arrays of L-shaped cavities in gold. This structure has two
cavities per unit cell.

results, although vaguely reminiscent of the simulated values, are far from

being polarization independent. The reason for this discrepancy is likely the

misshapen L’s that were realized in fabrication, see Fig. 8.10(d). As with the

rectangles, the sharp edges and corners are rounded, yet the effect is greater

in the more-complicated L-shaped cavities.

Rounding the corners of the L-shapes shifts the resonances towards longer

wavelengths, see Fig. 8.16(a). Additionally, the structure begins to demon-

strate different responses at different polarizations. While rounding the cor-
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ners accounts for some features seen in the experimental measurements, it

does not account for all of the features, see Fig. 8.16(b). Furthermore, un-

like the rectangular cavities (Fig. 8.14), the response of the compound array

with two L-shaped cavities is not the sum of the response of the individ-

ual structures, see Fig. 8.17. While it is difficult to fully explain all these

discrepancies, a likely cause of some is the degree to which water actually

penetrates into the cavities. If the cavities are not uniformly filled, or fill

differently with different patterns, the optical response changes accordingly.

It is not possible to simulate these more complicated situations with current

computational resources; this question remains open for further analysis.

8.5 Conclusions and outlook

We have demonstrated the potential capability of L-shaped cavity metama-

terials to both split and concentrate light, with high efficiency and concen-

trations. This response is mostly independent of the polarization of incident

light under ideal, PEC conditions. These results do show some field coupling

between cavities; other positions or orientations of the cavities with a unit

cell (e.g. 45◦ rotation of one L structure) may decrease these effects, leading

to complete polarization independence in the cavity response. Additionally,

these structures have potential applications in polarization controlling meta-
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(a) Simulated specular reflection from arrays of nominal and
rounded-corner L-shaped cavities in gold.
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(b) Experimental and simulated specular reflection from arrays
of rounded-corner L-shaped cavities in gold.

Figure 8.16: Frequency-dependent simulated and experimental specular re-
flection from arrays of rounded-corner L-shaped cavities is plotted in (b).
The nominal and rounded-corner structure are compared in (a).
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Figure 8.17: Frequency-dependent experimental and simulated (black
dashed) reflection from arrays of individual (colored dashed) and compound
(black solid) and L-shaped cavities in gold.
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materials, or possibly for non-reciprocal structures.

We computationally modeled, fabricated, and experimentally verified the

polarization-dependent reflection response of rectangular nanostructures. Fur-

thermore, we have shown experimentally how the resonances of arrays of

single cavities of different sizes are independent, such that the response of

a compound array matches the summed response of the individual arrays.

Although we had promising predictions of polarization independence with

L-shaped structures at optical frequencies from simulation, these were not

realized experimentally due to the constraints of fabrication.

The L-shaped structures are made at the limits of this fabrication method.

It is possible to simulate C-shaped structures with varying radii of curvature

as a better model of fabricated devices, but they would be difficult to fabricate

with consistent and controllable dimensions. Thus, despite some promising

results, L-shaped structures are not an ideal candidate for a polarization

independent, light splitting structure for solar energy applications. However,

as we discuss in the next chapter, cylindrical cavities do not share all these

difficulties.



Chapter 9

Cylindrical cavity arrays

9.1 Introduction

In this chapter we discuss the design, fabrication, and experimental charac-

terization of a metamaterial which demonstrates light localization, photon

sorting, and enhanced absorption at microwave frequencies. As in the pre-

vious chapter, the material is a compound subwavelength cavity array, here

consisting of multiple cylindrical cavities. The device spatially splits incom-

ing microwave radiation into two spectral ranges, individually channeling the

separate spectral bands to different cavities within each spatially repeating

unit cell.

Further, the target spectral bands are absorbed within each associated

set of cavities. The photon sorting mechanism, the design methodology, and

experimental methods used are all described. A spectral splitting efficiency

166



CHAPTER 9. CYLINDRICAL CAVITY ARRAYS 167

of 93-96% and absorption of 91-92% at the two spectral bands is obtained for

the structure. This corresponds to an absorption enhancement over 600% as

compared to the absorption in the same thickness of absorbing material.

We fabricate and experimentally measure the reflection response of this

structure. Furthermore, we probe some near-field effects at resonance to ex-

perimentally verify the photon sorting. Both the reflection and estimated

efficiencies from the experimental measurements are comparable to the sim-

ulated values.

We also discuss the path towards the application of these concepts to the

optical spectrum. Unlike the complicated L-shaped structures of Chapter 8,

which required unattainable sharp edges and corners to maintain the desired

effect, cylindrical cavities can be fabricated in a controlled manner with very

small radii. Furthermore, the existence of transparent, high dielectrics in

the optical regime allows multiple cavities per unit cell, while maintaining a

small-enough periodicity to minimize the detrimental effects of diffraction.

9.2 Metamaterial design

The structure discussed in this chapter is a two-dimensional square array of

subwavelength cylindrical cavities embedded in aluminum. Each unit cell

contains two cavities of different radii, a1 and a2, and identical heights, h,
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(c) The final fabricated device.

Figure 9.1: A schematic of periodic cylindrical cavities in a metal is shown
from top down (a), in a cross section through one set of cavities (b), and the
final fabricated device (c). The gray region represents the metal, the light
blue regions are the dielectric-filled apertures, and the white is the superstrate
(air) above the cavities. Here Λ = 26 mm, a1 = 8.03 mm, a2 = 5.74 mm,
h = 7 mm, and θ is the angle of incidence.
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arranged in a rhombic lattice, see Fig. 9.1. The individual cavities within the

unit cell are designed to support an effective cavity resonance or cavity mode

(CM) with amplified electromagnetic fields, where the lowest order mode’s

frequency dependence is given by Eq. 4.10. Thus, the structure’s resonance

response is tuned by adjusting the radii an and heights, of the cavities, and

the periodicity, Λ of the array. The two individual-cavity periodic structures

are then combined, placing two cavities within one unit cell and their di-

mensions are optimized to maximize photon sorting and absorption, and to

minimize coupled cavity effects that can occur within cavity arrays of this

sort.

Because the purpose of the device is to absorb the spectrally-sort pho-

tons, an absorbing material is placed within the cavities; this material is an

absorbing silicone elastomer dielectric (Sylgard 184), doped with graphite

(which is responsible for the absorption), whose dielectric value, ε, can be

adjusting by controlling the concentration of graphite inside the material, see

Fig. 9.2.

It is important to note that as the dielectric loss tangent (ε′′/ε′) of the

material increases, the resonances broaden, essentially overdamping the CM

resonance. By choosing a lower graphite concentration we are able to maxi-

mize the absorption and maintain independent cavity resonances. We found
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Figure 9.2: Variation in the silicone elastomer complex dielectric permittivity
ε at 9 GHz as a function of graphite concentration. Blue-solid (red-dashed)
curve is the real (imaginary) portion of ε.

that a graphite concentration of 8.36%, which gives a complex dielectric

permittivity of ε = 4.33 + 0.22i was able to absorb the maximum quan-

tity of incident power, while still maintaining clearly defined resonances, see

Fig. 9.3. Optimum coupling occurs when the probability of radiative decay

(i.e. lifetime of the mode) is equal to that of nonradiative decay. Our result

was found numerically, and future study is required to develop a complete

analytical model of this effect.

The goal of this device was to have two absorption peaks that are well

separated with respect to each other, while maintaining absorption peaks

with as large of a bandwidth as possible for each peak. The target frequen-

cies of the absorption peaks were chosen to be below the onset of far-field
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Figure 9.3: Variation in resonance properties of a dual-cavity structure as a
function of the dielectric loss tangent in the silicone elastomer dielectric. Too
small of a loss tangent will not provide enough absorption; too large a loss
tangent will overdamp the resonances and ruin the enhanced absorption.

diffraction, as these diffraction modes carry energy away from the material

surface, and thus compete with the CMs for the energy of the incident beam.

This competition between back-scattered far-field diffracted modes and CMs

imposes an important constraint on the design that ultimately limits the

number of different cavities that can fit within one unit cell.

9.2.1 Simulation

Once the preliminary design was obtained using Eq. 4.10, the device was fur-

ther optimized and analyzed using HFSS. With HFSS, the structures were

simulated using periodic boundary conditions in the transverse directions and

a Floquet port for the incident beam. We simulated the metal using the alu-
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minum material parameters from the HFSS library with a surface boundary

condition, and used the experimentally determined dielectric properties for

the elastomer. It is important to note that there is some degree of uncertainty

in the measurements of dielectric constants, which can cause a substantial

deviation from the results of simulations.

The resonant properties of the cavity modes can be analyzed using direct

and indirect methods, see Section 6.2.2. In the direct method, the volume loss

density (i.e. the fraction of incident energy absorbed in a particular region)

derived from the solved electromagnetic fields can be directly integrated over

the volume of each of the cavities. At cavity resonance this quantity will

exhibit a maximum. Off resonance, the field in the cavities are not excited

and the total volume loss will be minimized. To calculate the photon sorting

efficiency, SEn, we use the ratio of total electromagnetic energy absorbed in

the desired cavity En to the total energy absorbed by both cavities, ET =

E1 + E2

SEn ≡
En
ET

, (9.1)

i.e. the fraction of absorbed energy that was correctly split. This is a similar

expression to Eq. 8.5, however here we use the calculated absorption, rather

than the electromagnetic energy.

Alternatively, the cavity resonances can be determined indirectly from the



CHAPTER 9. CYLINDRICAL CAVITY ARRAYS 173

reflection intensity. In the absence of absorbing materials, the total reflec-

tion remains essentially constant, decreasing slightly due to small amounts

of surface loss at the metal surfaces. However, with absorption, we can char-

acterize a resonance in frequency-space by a dip in reflection intensity. In

practice, we utilize the simulated S-parameters to determine the reflection.

This metric is useful for a simple comparison to experimental measurements,

however it does not, by itself, determine where, spatially, in a structure the

absorption occurs.

9.2.2 Fabrication and measurement

The fabrication and measurement of this device was done by Ian K. Hooper

at the Electromagnetics Materials Laboratory at the University of Exeter.

An Anritsu M4640A vector network analyzer (VNA) was used to record the

measured complex S-parameters of the graphite loaded elastomers in an 8-12

GHz waveguide. The dielectric properties of the elastomer composites were

subsequently extracted using the Nicholson-Ross-Weir algorithm.[111, 112]

An aluminum plate was machined by CNC to the requisite design, and pre-

formed tablets of the selected elastomer composite were inserted into the

cavities.

To take reflection measurements, the sample was surrounded by pyrami-
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Horn

VNA

Absorber

Figure 9.4: Experimental setup for measuring reflection response from the
metamaterial. There is another horn on the other side of the leftmost pyra-
midal absorber sheet.

dal absorbers to limit scattering and the free-space p- and s-polarized re-

flectivity of the sample was measured using the VNA with broadband horns

between frequencies of 7.5 and 15.0 GHz, for angles of incidence between 5

and 35 degrees, see Fig. 9.4.

The field profiles were measured using the VNA with a broadband horn

for excitation above the metamaterial, see Fig. 9.5(a), with a local probing

antenna consisting of an exposed section of coaxial cable aligned along the

polarization direction, see Fig. 9.5(b). The probe antenna was computer

controlled by a three-axis translation stage, which allowed us to measure the
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(b) The local probing antenna.

Figure 9.5: Experimental setup for measuring the spatial dependence of the
electric field strength.
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spatial dependence of the fields.

9.3 Results

9.3.1 Optimized structures

Two-band structure

After the simulation process described earlier, we developed an optimal struc-

ture. This was based on the measured dielectric properties (Fig. 9.2) and the

CNC machine’s fabrication limitations. Taking these considerations into ac-

count, the optimal simulated device has a periodicity of Λ = 25.96 mm, and

the two cavities with identical heights of h = 7.07 mm, but different radii of

a1 = 7.99 mm and a2 = 5.83 mm. This device resonates at frequencies of

8.1 GHz and 9.6 GHz. Fig. 9.6(a) shows a plot of the total reflection from

this structure as a function of frequency under one polarization. There is a

tiny absolute difference in the reflection response between polarizations no

greater than 1%, see Fig. 9.6(b).

This device absorbs 96% (93%) of incident radiation at 8.1 GHz (9.6

GHz), with a splitting efficiency (Eq. 9.1) of 99% (95%). That is, the fields are

channeled to and into smaller (larger) of the two cavities, where the resonant

fields are strongly, and locally absorbed. These results are summarized in

Table 9.1. This device was the nominal structure we fabricated and tested.
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(b) Difference between simulated reflection under different polarizations.

Figure 9.6: Simulated reflection from an optimal two-band photon sorting
structure.
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Absolute absorption (%) Splitting efficiency (%)

Frequency (GHz) E1 E2 E1/ET E2/ET

8.1 96 1 99 1
9.6 5 93 5 95

Table 9.1: Percentage of the total electromagnetic energy absorbed E and
fractional splitting efficiency SE at target frequencies in an optimized two-
band structure. Here, the subscript 1 (2) corresponds to the cavity tuned to
concentrate 8.1 GHz (9.6 GHz) radiation. Note that the absolute absorption
numbers do not sum to 100%, as there is some reflected radiation.

Three-band structure

To make a three-band structure, with three independent resonances, we

started with the preceding two-band structure, and added a third hole, see

Fig. 9.7. Then, we used HFSS’s optimizer to improve on the initial structure.

The optimal simulated device has a periodicity of Λ = 24.75 mm, and the

three cavities with identical heights of h = 8.01 mm, but different radii of

a1 = 7.25 mm, a2 = 5.45 mm, and a3 = 4.5 mm. In this structure, the dielec-

tric in the cavities is ε = 4.46 + 0.05i. This device resonates at frequencies

of 8.05 GHz, 9.6 GHz, and 11.25 GHz. Fig. 9.8(a) shows a plot of the total

reflection from this structure as a function of frequency under one polariza-

tion. As with the two band structure, there is a small absolute difference in

the reflection response between polarizations, here no greater than 0.6%, see

Fig. 9.8(b).
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Figure 9.7: A top-down view of the three-band light splitting structure. New
cavities are highlighted in green.

This device absorbs 93% (82%) [82%] of incident radiation at 8.05 GHz

(9.6 GHz) [11.25 GHz], with a splitting efficiency of 97% (90%) [93%]. That

is, the fields are channeled to and into the appropriate cavity, where the reso-

nant fields are strongly, and locally absorbed. These results are summarized

in Table 9.2. Although this demonstration is for microwave structures, it

shows that polarization independent photon sorting is, in principle, possible

with three bands, thus increasing the potential efficiency of a multi-junction

device based on this approach.

9.3.2 Experimental results

The fabricated device has a periodicity of Λ = 26 mm, and the two cavities

with identical heights of h = 7 mm, but different radii of a1 = 8.03 mm and
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Figure 9.8: Simulated reflection from an optimal photon sorting structure.
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Absolute absorption (%) Splitting efficiency (%)

Frequency (GHz) E1 E2 E3 E1/ET E2/ET E3/ET

8.05 93 2 1 97 2 1
9.6 6 82 3 6 90 3

11.25 3 3 82 3 4 93

Table 9.2: Percentage of the total electromagnetic energy absorbed E and
fractional splitting efficiency SE at target frequencies in an optimized three-
band structure. Here, the subscript 1 (2) [3] corresponds to the cavity tuned
to concentrate 8.05 GHz (9.6 GHz) [11.25 GHz] radiation. Note that the
absolute absorption numbers do not sum to 100%, as there is some reflected
radiation.

a2 = 5.74 mm, slightly different than the optimal structure. It resonates at

frequencies of 8.10 GHz and 9.25 GHz. Fig. 9.9 shows the simulated and

measured reflection intensity of s-polarized microwave radiation specularly

reflected from the material surface at an angle of incidence θ = 17 degrees.

There is strong agreement between the simulated and experimental results.

There are two likely sources of error in the experiment as compared to

the optimal simulation. First of all, the pre-formed tablets of the elastomer

composite fit with different amounts of tightness in the large and small holes,

thus leading to a slight dielectric mismatch between the two cavities. Addi-

tionally, the elastomer was squeezed into the smaller hole, leading to a small

amount of elastomer sticking out above the top of the cavities. Any discrep-

ancies between simulated and experimental results have been accounted for
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Figure 9.9: Experimental and simulated specular reflection intensity from
the material surface for s-polarized radiation at θ = 17◦ angle of incidence.
The two dips in reflection intensity correspond to the two cavity resonances.

by adjusting these two parameters in simulation within a reasonable range.

We have also studied the dependence of these results on angle of incidence;

it is difficult to measure the reflection from this structure for normal inci-

dence. For radiation that is p-polarized, there is a variation in the reflection

(and thus, absorption) as a function of angle of incidence, see Fig. 9.10(a).

This is caused by the changes in the properties of evanescent fields above the

cavities in this polarization, which extends the effective height in Eq. 4.8 and

decreases the resonant frequency. However, in the s-polarization, where the

evanescent fields are largely unaffected, there is negligible variation over a

broad range of angles, see Fig. 9.10(b). At normal incidence the absorption
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response of this structure is polarization independent, and for shallow angles

(< 20◦) the response is largely polarization independent. Here, as well, there

is strong agreement between simulated values and experimental results, with

the differences accounted for by considering variation in material parameters.

Absorption enhancement and photon sorting

These results show that the expected photon sorting and absorption is oc-

curring as the theory and modeling predicts. Namely, as 8.1 GHz (9.25 GHz)

radiation approaches the structure from above a unit cell, 91% (92%) of the

incident energy is absorbed by the structure. The absorption enhancement

can be calculated by normalizing the absorption with respect to the fractional

surface area,

Sn = Λ2/(πa2
n), (9.2)

of each cavity, which is a standard metric used with enhanced optical trans-

mission.[17] This corresponds to an enhanced absorption of 303% (600%) at

8.1 GHz (9.25 GHz). Another way of calculating the enhanced efficiency of

this device is to compare it to the absorption Es in a 7 mm thick slab of

the absorbing dielectric that fills the cavities. This metric gives a enhanced

absorption of 610% (452%).
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(a) Specular reflection from the material for a p-polarized incident beam. The dashed
line shows the onset of diffraction.
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(b) Specular reflection from the material for a s-polarized incident beam.

Figure 9.10: The reflection from the material for both s- and p-polarizations.
Simulated results shown on the left, with experimental results on the right.
For shallow angles, the reflection response varies only slightly.
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Figure 9.11: Pseudo-color plot of the simulated volume loss density at a
height of 3.5 mm inside the cavities at the two frequencies. The red (blue)
color corresponds to the 8.1 GHz (9.25 GHz) resonances, which are overlayed
to see the photon sorting. The dashed circles are the edges of the cavities.
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Figure 9.12: Simulated total reflection intensity from the material surface for
normal incidence compared to energy absorption inside each cavity. The two
dips in reflection intensity correspond to the two maxima in cavity absorp-
tions.
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There is a very high spatial selectively to the absorption response at the

different resonances. Figure 9.11 is a pseudo-color plot of the volume loss

density in a cut-plane midway through the cavities; the spatially localized

nature of the absorption is readily seen. Additionally, the two dips in reflec-

tion intensity correspond to maxima in the integrated volume loss density

within the two separate cavities, see Figure 9.12. That is, the fields are

channeled to and into smaller (larger) of the two cavities, where the resonant

fields are strongly, and locally absorbed. To calculate the photon sorting

efficiency, SEn, we use Eq. 8.5, which gives the ratio of total electromagnetic

energy absorbed in the desired cavity En to the total energy absorbed by

both cavities, ET = E1 + E2, i.e. the fraction of absorbed energy that was

correctly split. At each resonance the absorption is highly localized within

the cavity tuned for that resonance. This structure has a simulated splitting

efficiency of 96% (93%). These results are summarized in Table 9.3.

We were also able to experimentally verify that this device spatially splits

the incident photons. Figure 9.13 shows a pseudo-color plot of the electric

field component along the polarization direction, measured 1 mm above the

metamaterial surface. The red (blue) color corresponds to the magnitude

of this field at the 8.1 GHz (9.25 GHz) resonances, which are overlayed to

see the photon sorting. The dashed circles are the approximate edges of
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Absolute Enhanced Splitting
absorption (%) absorption (%) efficiency (%)

Frequency (GHz) E1 E2 SnEn En/Es E1/ET E2/ET

8.1 91 4 303 610 96 4
9.25 7 92 600 452 7 93

Table 9.3: Percentage of the total electromagnetic energy absorbed E, en-
hanced absorption of the structure, and fractional splitting efficiency SE at
target frequencies in the fabricated structure, calculated from simulation.
Here, the subscript 1 (2) corresponds to the cavity tuned to concentrate 8.1
GHz (9.25 GHz) radiation. Note that the absolute absorption numbers do
not sum to 100%, as there is some reflected radiation.

the cavities below. This figure demonstrates that, at each resonance, the

fields are predominantly isolated in the regions immediately above the target

cavities. It is this light channeling property of the device that which leads to

the enhanced absorption. Note, that the vertically-oriented “stripes” of blue

between the larger apertures are artifacts of the measurement, likely caused

by scattering from the probe wire. This is supported by the fact that rotating

the sample does not change the orientation of the stripes, while rotating the

source and probe rotates these lines.

We can use the measured field strength F just above the surface of the

metamaterial to calculate an approximate splitting efficiency. Instead of

calculating the ratio of energy absorbed in each cavity, we can use the ratio
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Figure 9.13: Pseudo-color plot of the electric field (component along polar-
ization direction) measured 1 mm above the metamaterial. The red (blue)
color corresponds to the 8.1 GHz (9.25 GHz) resonances, which are overlayed
to see the photon sorting. The dashed circles are the approximate edges of
the cavities below.

of field strengths above the cavities, and estimate the splitting efficiency by

SEn ≈
Fn
FT

, (9.3)

where Fn is the field strength above a cavity and FT = F1+F2 is the total field

strength. Figures 9.14(a) and (b) show the average field strength (line) along

lines crossing the large and small cavities. The standard deviation of these

values are shown in the shaded region. The ratio of relative field strengths is

shown in Fig. 9.14(c) and the measured, approximate splitting efficiency is
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Frequency (GHz) Simulated splitting
efficiency (%)

Measured approximate
splitting efficiency (%)

8.1 96 98
9.25 93 92

Table 9.4: Comparison of the simulated and measured approximate splitting
efficiencies.

shown in Fig. 9.14(d). Using this approach, and averaging over a few peaks,

gives an estimated splitting efficiency of 98% (92%) at 8.1 GHz (9.25 GHz).

These values compare favorably to the calculated values from simulation, see

Table 9.4. The estimated SE is higher at 9.25 GHz, as this is a measure of

field strength, not directly of the absorption; although the fields are higher

above the smaller cavity, the absorption may be lower. Additionally, the value

of the SE at this frequency is less precise due to the experimental artifact.

Thus, this is an experimental verification of the photon sorting mechanism

described throughout this thesis.

9.4 A path towards an optical device

Modifying a device which operates at microwave frequencies to operate op-

tical frequencies primarily consists of scaling down all the dimensions of the

device. However, for all the reasons discussed elsewhere in this thesis (i.e.

changing metal properties, fabrication limitations, etc.) there are additional
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Figure 9.14: Experimental measurement of light splitting using field strength
above the cavities.
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complications. We outline some of these issues, and discuss some methods

of overcoming them.

Firstly, the cavity resonances should ideally be below diffraction. As

discussed in Section 4.3, the coupling of incident fields to the cavity is via the

evanescent scattered modes, thus any propagating diffracted mode inherently

decreases the energy available to the cavity by carrying the fields away from

the metamaterial. Operating at optical frequencies requires a fairly small

pitch, typically less than 450 nm, and smaller if there is a dielectric layer

above the metamaterial. Therefore, in order to have multiple cavities per

unit cell, they must be filled with a high dielectric, thereby increasing the

effective cavity size. These dielectrics, however, must be highly transparent at

optical frequencies to minimize absorption in the dielectric; generally different

materials are required in the IR and visible regimes.

These small sizes require advanced lithography techniques. Nevertheless,

unlike rectangles or L-shapes, cylinders can be fabricated, see Fig. 9.15, and

their radii can be accurately controlled. In this approach, the dielectric – in

this case, amorphous silicon (a-Si) – is patterned and etched, and metal – in

this case, gold – is electroplated to create the film. A device using a-Si would

operate in the IR regime; this method will also work with titanium dioxide

dielectrics for a visible regime device.
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Amorphous siliconGlass

Gold

(a) Close-up, cross-section view of a fab-
ricated structure.

(b) Large-scale view of a fabricated struc-
ture.

Figure 9.15: Fabricated nano-scale dielectric cylinders in a gold film. Cavity
radii can be accurately controlled.

As discussed many times in this thesis, metals at optical frequencies can

be quite lossy. For a device designed to merely absorb light, this may be

a feature. However, if the absorption is to occurs preferentially within a

particular cavity this serves as a detriment. Ultimately, there are very few

things that can be done to overcome this problem. Any light splitting device

which operates at optical frequencies will have an intrinsic loss due to metal

absorption which will effect overall transmission or preferred absorption.

For example, consider a near-IR photon sorting transmission array (i.e.

open aperture), with a periodicity of Λ = 500 nm, and the two apertures

filled with a-Si embedded through a gold film of thickness h = 200 nm, with

aperture radii of a1 = 145 nm and a2 = 66 nm. Figure 9.16 shows a plot of the

reflection from, transmission through, and calculated loss in this structure,
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Figure 9.16: Reflection from, transmission through, and loss in a simulated
IR transmission structure.

with light incident through a fused silica superstrate (in fabrication the fused

silica acts as a substrate). Where there are peaks in transmission, there are

also peaks in absorption.

Nevertheless, this transmission is localized, with light exiting different

holes at different frequencies. Figure 9.17 shows a plot of the z-component

of the Poynting vector at the bottom surface of the film, and photon sorting

is clearly seen by the relative strength of the power flow through each cav-

ity. However, although this structure demonstrates very strong coupling to

incident light (99% [79%] at 252 THz [306 THz]), the transmission is quite

low (56% [25%] at 252 THz [306 THz]). This is due to losses in the metal,



CHAPTER 9. CYLINDRICAL CAVITY ARRAYS 194

(a) Power flow through the bottom of the
film at 252 THz.

(b) Power flow through the bottom of the
film at 306 THz.

Figure 9.17: Simulated power flow at the exit (bottom) of the metal film at
the two peaks in transmission: 252 THz (a) and 306 THz (a). Photon sorting
is seen by the strength of the power flow through each cavity.

which can be seen by looking at the volume loss density plotted in various

regions, see Fig. 9.18. At both of these frequencies, the loss is entirely within

the metallic regions of the structure.

Specific considerations for a solar cell

Additional complications arise when using these devices in a horizontally-

oriented, multi-junction solar cell. Ideally, the different junctions of this cell

should be connected in parallel. This requires all of the cavities of one size to

be electrically isolated from the cavities of other sizes. One possible route to

achieve this is by running metal strips below the cavities, isolated from the

adjacent strips and the upper metamaterial layer, via a dielectric (such as

silicon dioxide, which has a high dielectric breakdown voltage). Figure 9.19
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(a) Regions of energy loss at 252 THz. (b) Regions of energy loss at 306 THz.

Figure 9.18: Volume loss density in the simulated IR transmission structure
is plotted on a log scale at the two peaks in transmission: 252 THz (a) and
306 THz (a). The loss is entirely in the metallic regions of the structure.

a schematic cross-section illustration of the proposed structure and an SEM

image of a proof-of-concept fabrication attempt. Careful alignment of the

structures are necessary, but this should be achievable within the tolerances of

existing fabrication capabilities. In this structure the absorbing compounds

would be fixed at the bottom of the cavities. One potential disadvantage

of this approach, therefore, is the decreased volume over which absorption

occurs.

9.5 Conclusions and outlook

We have demonstrated the capability of a compound subwavelength cavity

array to spatially split, concentrate and absorb microwave radiation, with

extremely high efficiency and concentrations. This response is polarization
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(a) Cross-section schematic of contact
isolation. The top gold is the metamate-
rial; the bottom gold makes the electrical
contact.

(b) Fabricated proof-of-concept device.

Figure 9.19: One possible approach for electrical isolation.

independent for shallow angles. This structure can also, in principle, be ex-

tended to absorb additional bands by including additional cavities in each

unit cell, as long as the periodicity can stay small. With higher values of

the real portion of the cavity dielectric it is possible to decrease the cavity

radii while maintaining the resonance location. This would allow additional

cavities to be added, without sacrificing the sub-diffraction periodicity. Fur-

thermore, this device could be improved by shifting the modes further down

in frequency, or by reducing the pitch.

Although this structure was designed to operate in the microwave regime,

with appropriate scaling it can be adjusted to other wavelength ranges, where

it has applications in multi-junction solar energy absorption. For optical fre-
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quencies, however, there are additional difficulties to overcome, including

fabrication limitations and increased metal loss. Other structures with nar-

rower bandwidth absorption peaks and more absorption peaks are possible

and may be useful in developing multi-wavelength microbolometers or pho-

todetectors.
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