Experimental measurements of dispersion relations in a disordered mechanical chain

Eli Lansey, Fredy R. Zypman

Department of Physics, Yeshiva University, New York, NY, USA

Eli Lansey

Hometown: Edison, NJ, USA

Education: Senior, Yeshiva University, New York, NY, USA

Major: Physics Minor: Mathematics

Background

- Disorder induced localization applications
 - Charge accumulation in nano-sized structures
 - Macroscopic structures like photonic crystals
- We built a mechanical setup to measure natural frequencies and modes
 - Major improvement over earlier attempts
 - Minimal friction
 - · Allows for a system with many degrees of freedom
 - Can have uniform structure, or
 - Can easily be modified with localized disorder points with magnets, weights, etc. to mimic lattice imperfections
- Device consists of a damped, sinusoidal-forced system of many masses coupled with springs
 - The amplitude and phase of each mass's vibration can be obtained for each drive frequency
 - This gives expected transmission through the system as a function of frequency

Device Setup

- · 23 identical metal cubes linked by springs
 - Springs "KrazyGlued" to cubes
 - Cubes hanging from long strings (such that $\sin \theta \approx \theta$)
 - Strings attached to "2 x 4" hanging from ceiling
- Excited at one end by a variable frequency mechanical vibrator
- Essentially a speaker cone attached to a rod
- Amplitude and frequency controlled with a digital signal generator
- · Output response can be measured at any of the cubes
 - Using piezoelectric accelerometer
 - Lock-in amplifier used to obtain signal in noisy environment (big air conditioning on top of building and car traffic at the bottom)
 - Only took measurements for the last cube. But can be done for any.
- · Disorder can be introduced by:
 - Changing one or more of the masses
 - Changing one or more of the springs
 - Introducing other forces (i.e. magnetic) at one mass

Device Setup

The mechanical vibrator

A few blocks in the middle section

Piezoelectric accelerometer attached to last block

The complete system

Amplitude Measurements

Phase Measurements

<u>Outlook</u>

- In simplest system we were successful in measuring some resonance peaks and phase changes
- · Experimental Problems
 - Intrinsi
 - . Due to low friction, response time is slow
 - · Single sweep of frequencies takes at least a few days
 - Various external conditions (i.e. temperature, mechanical breakage) can occur over the course of a set of measurements
 - Response properties of accelerometer at low frequencies has not yet been determined
- Although there are technical hurdles still to overcome, fundamentally this device can be very useful for measuring the effects of localized disorder