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In this paper we analytically study the resonance response of cylindrical

subwavelength apertures embedded in metal films at near UV, optical,

and near IR frequencies. This analysis is concise, and allows accurate and

intuitive prediction of both propagating and evanescent modes, which are key

contributors to enhanced optical transmission through thin metal films. In this

approach we do not analyze the detailed behavior of the fields inside the metal

walls, but still obtain the effects of the implicit buildup of charges within

those walls. We calculate the modal dispersion relation, cutoff dependence

on cylinder radius, and waveguide attenuation for a cylindrical aperture

embedded in metal. We support our findings with finite element simulations

and find strong agreement with our theory. c© 2011 Optical Society of America
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1. Introduction

Enhanced optical transmission (EOT) was first experimentally observed by T.W. Ebbesen

in 1998 and has since been shown to have a wide range of applications, including light

concentration and trapping [1–13]. Past work has highlighted that the excitation of fields

inside gratings and apertures can lead to exceptionally high light concentration within the

confined spaces of 1D cavities or gratings, as well as enhanced transmission through the

gratings [14–16].

A full and accurate analysis of EOT using finite element or finite difference time domain

simulations requires significant computer resources and long calculation times. Therefore, a

quick method to determine the modal response of cavity modes is of great utility for the

design of optical structures. Thus, there has since been a major effort to describe EOT

theoretically.

There is a large body of work analyzing these structures assuming the metal is a perfect

electric conductor (PEC) [17–19]. These models have the benefit of being largely analytical

in nature. However, these approaches are poor models for optical EOT, as metals at optical

frequencies display large variation in their dielectric functions, and are far from perfect

conductors.

A recent thorough survey of approaches towards modeling EOT can be found in refer-

ence [20]. In that review, many theoretical models are compared via the heavily utilized,

semi-analytic coupled-wave (CW) analysis. This CW approach yields results with varying

degrees of agreement with simulation and experiment, but they are all, ultimately, numerical

solutions. That is, trends and dependencies must be empirically deduced from the results.

Thus, a first-principles approach to describe EOT is desirable. One recent approach treats

the cavity-metal structure at optical frequencies as a dielectric core-cladding fiber optic

(FO) analogue and uses established techniques to numerically solve for the resulting modal

dispersion curves [21–23]. The calculated modes are then analogous to propagating fiber

optic modes, with TE, TM, or hybrid TE/TM-type waveguide modes.

The FO approach has the benefit of appealing to the vast body of work involving fiber

optics, but it has a few notable limitations. First, it assumes the primary cause of EOT is via

the excitation of propagating waveguide modes (WM). While this is a valid approximation for

optically thick films, in thin films, however, the decay length of evanescent waveguide modes

can be many multiples of the film thickness and would thus also contribute to EOT. Secondly,

it numerically requires using a lossless Drude model for the metal dielectric, which does

not adequately match the actual physical properties of most metals at optical frequencies.

Furthermore, while this approach can be used for cylindrical apertures, it is difficult to

generalize for other geometries. Finally, the dispersion curves must always be calculated

numerically using this method, and is thus limited in a similar manner as the CW approaches.
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Nevertheless, dispersion analysis is a powerful approach for determining the waveguide

cavity modes that can be excited within a particular aperture. In this paper we present

an analytical theory for calculating the modal dispersion curves of cylindrical apertures in

real metals. We frame our approach using waveguide analysis with an approximate “skin

depth boundary condition” (SDBC) at the cavity walls. We use this approximation to find

an equivalent effective PEC cavity and its modal dispersion properties.

This analysis carries all the benefits of dispersion analysis as discussed in [23], for exam-

ple, with the added benefit of determining the evanescent modes and including real metal

parameters. This approach describes the fundamental behavior of WMs at optical frequen-

cies using approximate boundary conditions. Unlike many other approaches, this theoretical

model directly predicts the dispersion curve, and its dependence on aperture dimensions and

metal parameters, without needing to rely on interpretation of numerical solutions.

2. Waveguide solutions

Here we discuss a cylindrical aperture of radius a, filled with dielectric ε embedded in a metal

film. We neglect any magnetic effects, taking μ = 1 for all materials, see Fig. 1. Waveguide

cavity modes are solutions ψmn to the 2D wave equation,

[∇2 +
(
εκ20 − k2z

)]
ψmn = 0, (1)

where κ0 ≡ ω/c, and kz is the propagation constant along the length of the aperture [25].

The solutions to this equation in cylindrical coordinates take the form,

ψmn(r, φ) = eimφJm (βmnr) , (2)

where the z-component of the electric field is,

Ez(r, φ, z) = ψeikzz. (3)

Here, Jm is the m-th Bessel function of the first kind, and the value of m and the radial

wavevector βmn is determined from boundary conditions. We only show explicit calculations

for TM modes in this paper, but the analysis applies to TE modes as well.

2.A. Approximate boundary condition

In our analysis we use an approximate boundary condition to find the values of m and βmn.

Since metals at optical frequencies do not have infinite conductance, we relax the requirement

that the fields just inside the metal wall drop to zero. That is, for a real metal, charges build

up inside the surface of the walls of the aperture over some skin depth, δ. Although these
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charge distributions need not be cylindrically symmetric, we still require 2π periodicity in

the φ direction, so m must take an integer value.

Although the metallic skin depths at optical frequencies can be large, beyond that depth

we expect metals to behave like perfect conductors, i.e. the fields drop rapidly to zero. When

δ is significantly smaller than the characteristic aperture dimension, a, typically on the order

of the wavelength λ, this allows significant simplification of the resulting equations. Fig. 2

shows the variation of the ratio δ/λ for a few metals over a range of frequencies. The small

value of this ratio motivates our approximation.

Our approach here is to find an effective cavity which accurately captures the properties

of the aperture as well as the effect of the real metal walls. It has already been shown with

stacked photonic crystal nanocavities that resonance properties of a complicated structure

can be accurately described by determining an effective resonant cavity with PEC walls [24].

Here, too, we find an effective PEC cavity using the skin depth as the limiting length scale.

The fields inside the metal walls can be written in terms of Hankel functions of the first

kind [21], which decay extremely rapidly. Thus, the majority of the fields in the metal are

constrained within a very small region close to the surface of the aperture. We make the

reasonable assumption that upon reaching one skin depth into the metal we have accounted

for the contribution of the fields within the metal, and beyond that point it is effectively a

PEC. This argument is supported by the strong agreement of this model to simulated results

(see Fig. 3).

Then, for a cylindrical aperture of radius a centered at the origin, we can apply the perfect

electric conductor boundary conditions:

n̂× �E = 0, (4a)

n̂ · �H = 0, (4b)

where n̂ is a unit normal to the cavity wall, at a radial distance r = a+ δ rather than at the

cavity walls (r = a).

It is important to highlight that this analysis does not describe the complete details of

the fields’ behavior within the metal. This is different than many other approaches discussed

in the introduction that do, in fact, describe the fields in the metal explicitly. Instead we

consider only the overall effect that the imperfect conductor has on the behavior of the fields

within the cavity itself. This simplification allows us to avoid relying on numerical techniques

to determine these effects.
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3. Dispersion analysis

Using conservation of energy, or by substituting Eq. (2) into Eq. (1), we get the dispersion

relation,

ε
ω2

c2
= k2z + β2, (5)

where ω is the angular frequency, c is the speed of light, and β is found by evaluating

Jm [β(a+ δ)] = 0. Applying these conditions gives

β =

(
1

1 + ξ

)
β0 (6)

where β0 ≡ χmn/a, with χmn being the nth root of the mth Bessel function, and ξ ≡ δ/a.

Note, that for a perfect conductor δ → 0 so ξ → 0, and we recover the well-known waveguide

modes β0 [25]. As the relative length of the skin depth increases (i.e. the metal becomes

increasingly less PEC-like), ξ increases, and the magnitude of the transverse wavevector

decreases. This, in turn, shifts the dispersion curve toward lower frequencies (see Fig. 3,

inset).

Equation 5 has the benefit of solving for all possible modes, both propagating (real kz) and

evanescent (imaginary kz). It is well known that near-field evanescent fields can contribute

significantly to the ability of structures to couple to incident light as well as transmitted

waves [20, 26]. Furthermore, as discussed earlier, the decay length can be many multiples of

film thickness in thin films, whereby evanescent modes directly contribute to EOT. Hence,

solving for all modes, both propagating and evanescent, produces a more complete picture

of the resonance behavior of these nanoresonator apertures.

3.A. Sample comparison with simulation

The skin depth at various frequencies can be calculated using

δ(ω) =
c

ωκ(ω)
, (7)

where

κ(ω) =

√
1

2

√
� [εm(ω)] 2 + � [εm(ω)] 2 − 1

2
� [εm(ω)], (8)

is the imaginary part of the index of refraction of the metal [27], and where the value of the

dielectric constant, εm, of the metal can be found experimentally or through use of a Drude

model,

εm(ω) = 1− ω2
p

ω(ω − iωτ )
, (9)

where ωp is the plasma frequency and ωτ is the collision frequency [28].
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Figure 3 shows a number of dispersion curves for silver apertures with a = 190 nm, ωp =

1.37 × 1016 s−1 and ωτ = 7.29 × 1013 s−1, calculated using this method, along with finite

element full-wave eigenmode simulations of the same structure. As the figure shows, there

is strong agreement between the theoretical prediction and the simulation results. The inset

shows the curves predicted by this model as well as the curves using a PEC boundary

condition. The shift to lower frequencies seen here is due to the effectively larger cavity.

4. Cutoff dependence

Using the cutoff condition, kz = 0, we can solve Eq. (5) for the cutoff frequency, ωcutoff, of

a mode in terms of the radius, a, of an aperture which supports it. Practically, due to the

frequency dependance of δ, it’s easier to directly calculate the radius

a =
c

ωcutoff

χmn√
ε
− δ (ωcutoff) (10)

in terms of ωcutoff. Note how apertures with smaller radii (by a subtractive factor of δ) permit

higher frequency resonances as compared to the perfect electric conductor condition. Here,

too, when δ → 0 as in a PEC we recover the well-known cutoff result. Fig. 4 shows a plot of

fcutoff as a function of the radius a for a few TM modes in silver. Note that for a given radius

the cutoff frequency is lower using this model, again due to the effectively larger cavity size.

The general trend of these results have been known empirically for some time, from ex-

perimental and numerical methods [12]. Here, though, we predict these properties in an

intuitive analytical form. Therefore, we view those established results as a confirmation of

the theoretical approach developed here.

5. Effect on fields and induced charges and currents

Using Eq. (2) with Eq. (6) allows us to calculate the field profiles within the apertures. Fig. 5

shows some calculated fields for a few TM modes for ξ = 0.15. Note that these fields are only

plotted within the cavity, and not into the cavity walls, as we have not analyzed the detailed

behavior of the fields within the metal, only the net effect it has on the cavity response.

Additionally, note that the fields do not drop to zero at the cavity walls as they do for a

perfect conductor.

For ξ 
 1, we can expand Eq. (2) in powers of ξ. Keeping through quadratic terms, we

have

ψ(r, φ) = {Jm (β0r)− 1

2
ξ(ξ − 2)β0rJm+1 (β0r)

+
1

2
ξ
[
m(mξ + ξ − 2)− ξβ2

0r
2
]
Jm (β0r)}eimφ. (11)
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This corresponds to the perfect electric conductor field Jm (β0r) plus a correction due to the

additional buildup of charges in the metal.

Fig. 6 shows a plot of ψ for m = 0, n = 2 and ξ = 0.1. If the dielectric of the metal is

calculated using Eq. (9) with a = 190 nm, this value of ξ corresponds to f = 611 thz . The

thin line is the PEC field component of Eq. (11), with the dashed line being the correction

due to our method. The thick black line corresponds to the total field behavior. We have

additionally plotted the decay of the fields into the metal wall. Note that the dominant

contribution to total field strength is from the portion of the field concentrated within the

cavity, with only small portions of the field penetrating into the metal.

Eq. (11) shows that for good conductors (i.e. small ξ) there is no shift in the resonance of

the cavity for the lowest order modes, while there is a change in the overall field behavior

accounting for the buildup of additional surface charges. For larger ξ or higher order modes,

however, it is necessary to use the complete expressions Eqs. (2) and (6) to calculate the

dispersion relation. Additionally, although ξ varies as a function of frequency, if there is

minimal variation of this value over the frequency region of interest, it is straightforward to

calculate the shift in resonance using Eq. (6).

Furthermore, note that at the metal surface, r = a, there is a nonzero Ez field equal to

Ez = −1

2
ξ(ξ − 2)χmnJm+1[χmn]e

imφ. (12)

This correction can be thought of as the contribution to the field from an effective distribution

of surface plasmon charges, σsp, on the surface of the metal. This is in addition to the surface

charges, σpec, which arrange themselves on a perfect conductor to counterbalance the incident

field. Then, the total surface charge on the metal is

σ = σpec + σsp. (13)

We find the value of σ using the continuity expressions

n̂ · ( �D2 − �D1) = 4πσ (14)

resulting from Gauss’s law [25], where n̂ is a unit normal from region 1 to region 2. Requiring

the field inside the metal ( �D2) to drop to zero, we get

σpec =
iεkz
4π

β0
β2
Jm+1[χmn]e

imφ, (15a)

σsp = −1

2
ξ2

(
χ2
mn −m2

)
σpec. (15b)

where the value of kz is determined by Eq. (5) and β by Eq. (6). These expressions result
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from first operating on Eq. (2), and then expanding in powers of ξ. Note that χ2
mn > m2, so

this additional effective surface charge distribution is always of opposite sign to the perfect

conductor distribution.

We can likewise break the induced effective surface current,

�J = �Jpec + �Jsp, (16)

into the current, �Jpec, present in a perfect conductor and the surface plasmon current �Jsp.

Using the continuity expressions,

n̂× ( �B2 − �B1) =
4π

c
�J, (17)

requiring the field inside the metal ( �B2) to drop to zero, we get currents

�Jpec = ẑ
icεκ0
4π

β0
β2
Jm+1[χmn]e

imφ, (18a)

�Jsp = −1

2
ξ2

(
χ2
mn −m2

)
�Jpec, (18b)

traveling upwards and downwards. Here the additional induced current travels in the opposite

direction to the current induced in a perfect conductor. This decrease in current is due to

the resistive losses in the metal.

6. Attenuation

We can also use these results to calculate, α, the time-averaged fractional power lost per

unit length of the cavity. The time-average power absorbed per unit length is [25]

Pabs =
aωδ

4
|Hφ|2 , (19)

while the time average power transmitted per unit length, Ptrans, is found by taking the ẑ

component of the real part of the Poynting vector, integrated over the area of the aperture.

The ratio

α ≡ Pabs

Ptrans

=
2ξ

(1 + 4ξ)

εκ20
kz

(20)

is the power lost per unit length in propagating modes, normalized with respect to the

amount of power flowing down the cavity. Here we have again kept through quadratic terms

in ξ. Thus, the power, P , decays as a function of z by

P (z) = P0e
−αz, (21)
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where P0 is the incident power.

Figure 7 shows the variation of α as a function of frequency. After the initial drop in loss

above the cutoff, α increases with frequency due to larger portions of the field penetrating

into the metal. Note that this expression only holds above the cutoff frequency; below cutoff

the attenuation is given by the imaginary part of kz.

Furthermore, as seen in Fig. 7, for an aperture of a particular radius there is a frequency

at which the loss is minimized. This frequency can be found by finding the roots of

εκ20
β2
0

=
2ξ(1 + 5ξ) + (1 + 2ξ + 4ξ2)ωξ′

ξ(1 + 7ξ) + (1 + 3ξ + 3ξ2)ωξ′
, (22)

in terms of ω, where ξ′ ≡ dξ/dω. This solution will depend on the explicit form of ξ(ω) for

a given metal, as well as the particular radius of interest.

It is worthwhile to note that there is no minimum to α with respect to the aperture radius.

For larger radii, α tends towards zero, as the propagating energy is proportional to a2, while,

for a particular frequency, the skin depth is fixed. Thus, the relative amount of loss decreases

with increasing radius.

7. Summary and conclusion

We have presented a new analytical model for waveguide resonance in real metals, which

is a first step in developing a general model for EOT. Unlike other methods, this simple

approach allows direct analytic predictions of various resonance properties, without needing

to rely on CW analyses or other numerical techniques. We have shown, through illustrative

examples with silver, strong agreement between the theory and simulated results, and some

predictions of this model are confirmed by long-known experiments, as well.

Although the model was applied to apertures in silver, another major advantage of this ap-

proach is that the analytical form of the field response of all metals and cylindrical apertures

is the same. The differences between various metals and frequencies are determined only by

the value of ξ. This allows easy and accurate prediction of waveguide resonance properties,

without relying on complicated or time-consuming numerical calculations and simulation.

Furthermore, it is easy to measure values of metal dielectrics and calculate values for ξ to

incorporate in this analysis, and not rely on a Drude model.

Additionally, these results can be used as part of a larger theoretical framework to find

the complete resonance and transmission response of apertures embedded in metallic films

of finite thickness. For example, additional restrictions can be placed on kz transforming the

waveguide into a resonant cavity. These restrictions would arise from boundary conditions

across the aperture openings. For example, a transmission/reflection matrix method can be

used to determine these restrictions, and, together with the methods described in this paper,
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can be used to find the resonance frequencies of the cavity along with quality-factor of the

resonances. A detailed analysis of these applications, however, is beyond the scope of this

paper.

This approach can also be generalized to apertures of arbitrary shape. The general solutions

to the wave equation Eq. (1) determine the functional form of the cavity modes, while the

dispersion relation of Eq. (5) is generalized to

ε
ω2

c2
= k2z + γ2, (23)

where γ, the generalized transverse wavevector, replaces the radial wavevector β. The value

of γ is found by evaluating boundary conditions Eq. (4) at a distance δ into the cavity walls,

see Fig. 8. For particular geometries, it is also possible to decouple TE and TM modes as

we have here.

Of particular interest are rectangular waveguides which are difficult to solve using the

aforementioned fiber-optic method [29, 30]. However, using the general approach of this pa-

per yields a quick, analytic solution. The response of rectangular apertures is polarization

dependant, and as such has many applications in polarimetry. Here too, a detailed analysis

of this application is beyond the scope of this paper, nevertheless, the ability to accurately

predict the resonance properties of subwavelength apertures is of great utility.
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��2��ΕΚ0
2�kz2�� Ψ � 0

Fig. 1. Schematic of cylinder waveguide geometry and solution strategy. The
gray region represents the metal, and the white region is the dielectric-filled
aperture.
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Fig. 2. The ratio of δ/λ for a few metals over a range of frequencies.
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Fig. 4. (Color online) The TM cutoff frequency fcutoff as a function of the radius
a for a few modes m = 0, 1, 2 and n = 1 in silver. The solid lines are calculated
using the method described in this paper, the dashed lines are curves using
for a perfect conductor.

17



Fig. 5. (Color online) Calculated TM ψ fields in silver with ξ = 0.15.
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Fig. 6. The radial field dependance of ψ for a TM mode using Eq. (11) for
m = 0, n = 2, and ξ = 0.1. The thin line is the perfect conductor waveguide
mode, the dashed line is the contribution due to additional charges in the
metal, and the thick line is the superposition of the two. The vertical dashed
line indicates the position of the cavity walls. The rapid decay of the field
inside the cavity walls is also plotted.
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Fig. 7. (Color online) The fractional power loss α per unit length of a cylindrical
apertures of radius a = 190 nm filled with a dielectric ε = 3 embedded in Drude
silver. The loss is plotted for a few resonant modes.
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Fig. 8. Schematic of an arbitrarily-shaped cavity and solution strategy. The
gray region represents the metal, and the white region is the dielectric-filled
cavity.
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